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It is useful to know the meridian of maximum 
axial refraction when combining the effects of 
two ophthalmic cylinders crossed obliquely. To 
do this, we need to first describe how the axial 
radius of curvature of an ophthalmic cylinder 
changes from infinity along its axis to its 
minimum value perpendicular to that axis. 
Ophthalmic cylinder meridional sections are 
ellipses of variable shape that transform from 
initial front and back parallel lines along the 
cylinder axis to a circular section perpendicular 
to that axis.
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Assume that the meridian of minimum 
ophthalmic cylinder radius occurs in a parabolic 
section, rather than a circular one. 

Now assume that meridional sections maintain 
a parabolic shape as they vary towards a single 
tangential point represented as the cylinder axis 
with an infinite radius of curvature relative to 
that point.
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This will allow for the following relatively easy 
approximation of the axial radii of curvature of 
meridional sections. If these approximate axial 
radii of curvature are expressed in forms that 
are additive in terms of refraction, we can then 
approximate the sum of those expressions for 
any meridional section of obliquely crossed 
ophthalmic cylinders, and we can approximate 
the maximum sum of those expressions with 
the required meridional axis. 
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We know that with any axial radius of curvature 
CB, and index of refraction ℝ, the axial image 
of a distant object lies at H when:

ℝ  = HB/HC
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We also know that the axial refractive effects of 
compound refractive surfaces at B are additive 
only as their refractive "powers," which equal:

 ℝ/HB  =  1/HC  =  [(HB - HC)/HC]/CB  =


(ℝ- 1)/CB
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All parabolas have the same shape, in the 
same way that all circles have the same 
shape. However, while circles have a single 
(internal) determining constant, the radius of 
curvature, parabolas have both a 
determining constant internal and external 
to the curve, and can be defined by either.  
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For example, a parabola's external determining 
constant equals BK when: 

Both these curves have the same shape. The 
one on the left simply represents a “zoomed in” 
look at the vertex of the one on the right.

SB  =  BT

BT      BK

8



We can set up the necessary 
off-axis conditions to 
determine a parabola's axial 
center of curvature in terms 
of its internal determining 
constant XB, by involving ZN 
in the geometric solution for 
XB.
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We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the determining geometrical 
relationships axial as N ⇒ B, they should also 
depend on line NP being parallel to the axis, and 
XP being parallel to ZN.  
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Since as N ⇒ B, 

Z ⇒ C by definition, 

and since XP = ZN, 


P will remain external to the curve, and X can 
therefore not be its axial center of curvature, but 
must instead lie somewhere along CB. 
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In order to maintain ZN perpendicular to the 
parabola at N as N ⇒ B, the same geometrical 
relationships must exist that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)
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TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

Since TN = SB, the external determining 
constant BK equals 2(CB).

Since TB = 2(YB), the internal determining 
constant XB equals (CB)/2. 
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Refracting power equals:      (ℝ- 1)/CB


If    ℝ  = 1.5,    this equals:    1/[2(CB)]

                                                       

For a parabola:   SB/BT = BT/BK = BT/[2(CB)]

           

so its axial refracting power then equals:     


SB/TB2   = SB/SN2   =   1/BK
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When 2(SO) equals the minimum sagitta of an 
oblique parabolic cylinder, and when with equal 
sagittal depth SB, 2(SV) equals the minimum 
sagitta of a more highly curved parabolic cylinder 
with a horizontal axis:
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Keeping ΔOSV constant, as we rotate circle SOG 
with variable diameter SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα
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Keeping ΔOSV constant,   as O' ⇒ O:

SG and diameter SO' decrease.

SV' increases more than SO' decreases.
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Keeping ΔOSV constant,  as V' ⇒ V:

SG and diameter SO' increase.

SO' increases more than SV' decreases.
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Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or   V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations of SV'O'   
about S produce only minimal changes in the sum 
(SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, the 
minimum (SO' + SV') must occur near where 
small rotations of SV'O' within ΔOSV produce 
equal but opposite changes in SO' and SV'. 
Therefore, the minimum  (SO' + SV') can be 
found by finding the position of SV'O' where:


Limit  Δ (SO')       =        Limit  Δ (SV')

Δθ ⇒0                           Δα ⇒0  
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However, the combined effects of refraction 
are additive only as refractive powers, 

which, when  ℝ  = 1.5,  equal:


 SB/(SO')2   and    SB/(SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
by finding the position of SV'O' where:

Limit  Δ    [SB/(SO')2]   =    Limit  Δ     [SB/(SV')2]

Δθ ⇒0                                Δα ⇒0      


To solve this equation, each expressed limit must 
be transformed into the variable that approaches 
zero, so the equation must be transformed into: 
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Limit  Δ{[SB(SO/SO')2]/SO2}   =  Limit  Δ{[SB(SV/SV')2]/SV2}

Δθ ⇒0                                        Δα ⇒0   


Limit  Δ{[(SB)sin2 θ]/SO2} =  Limit  Δ{[(SB)sin2 α]/SV2}

Δθ ⇒0                                  Δα ⇒0   


(SB/SO2)   Limit   {Δsin2 θ}  =  (SB/SV2)   Limit   {Δsin2 α}

                 Δθ ⇒0                                    Δα ⇒0   
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Limit as Δθ ⇒ 0 of (Δsin2 θ)     =  SO2/SV2

Limit as Δα ⇒ 0 of (Δsin2 α)
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Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0       

on the reference circle:

AW   ≥   LD  ||  AW

∠ALD   =  ~AID/AI 


≥  ~AI/AI  =  π                       

First establish the necessary functions of θ in 
terms of arcs and chords.
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θ  =  ~AL/AI      


sin2 θ  =  AL2/AI2

                              

Δ θ  =  ~LD/AI   


sin2 Δ θ  =  LD2/AI2


(θ + Δ θ)  =  ~ALD/AI    


sin2 (θ + Δ θ)  =  AD2/AI2
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cos θ  =  IL/AI             


cos (θ + Δ θ)  =  DI/AI

                                                           

sin θ  =  AL/AI  =  JL/IL         


sin θ cos θ  =  (JL/IL)  (IL/AI)

                                                           

2 (sin θ cos θ)  =  ML/AI


2 (sin θ cos θ)  =  sin 2θ
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Then consider the following property of the 
cyclic quadrilateral circle ALDW:  


AD (LW)  =  AL (DW)  +  LD (AW)  

AD2  =  AL2  +  LD (AW) 


AW  =  LD  +  2 (XL)  =  LD  +  2 (AL) (XL/AL)


ΔDIA  ≅  ΔEWD  =  ΔXLA  


AW  =  LD  +  2 (AL) (ID/IA)


AD2  -  AL2  =  LD2  +  2 (LD) (AL) (ID/IA) 
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AD2  -  AL2  =  LD2  +  2 (LD) (AL) (ID/IA)     

AD2/AI2   -   AL2/AI2  = 

LD2/AI2  +  2 (LD/AI) (AL/AI) (ID/IA)     


sin2 (θ + Δθ)  -  sin2 θ  = 

sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ) 


Δ(sin2 θ)  =  sin2 (θ + Δθ)  -  sin2 θ  =

sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ) 
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Limit     Δ(sin2 θ)  =

Δθ ⇒0     Δθ


Limit     sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ)  =

Δθ ⇒0               Δθ


=  2 sin θ (cos θ)  =  sin 2θ


because:


Limit      sin2  Δθ   =   1  ;    Limit       sin  Δθ   =   1

Δθ ⇒0     Δθ                       Δθ ⇒0      Δθ


30



Therefore, the meridian with the maximum 
combined effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV 
into SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  =  Sj  ⊥  SV 

to construct:

32



Draw  Sb   so that:


SO2/SV2  =  Sj2/SV2  =  Sj/Sb


by making:


Sj/SV  =  SV/Sb


so that:


Sj2/SV2  =  Sj/Sb  =  SO2/SV2
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Similar triangles 
then show that:


SO2    =    aS

SV2           aV
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Draw ad || SO


Choose a circle 
through S and V 
with a variable 
diameter SV' so that 
FZV lies on a 
common chord.
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The easiest way to do 
this involves a template 
of various circles, each 
with the location of their 
diameters already 
marked. 
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SV' is the meridian 
with the maximum 
combined effects 
of refraction 
because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Double-angle Method
We have already shown how to find angle θ, 

and angle α, so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α

An additional method, the double angle method, 
employs the fact that an arc subtends twice the angle 
at a circle’s center as it does at its circumference, and 
that the entirety of a circle subtends π radians any a 
point on its circumference. To illustrate:
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∠DNA  =  2∠DMA  ;  ∠DNC  =  2∠DMC

∠ANC = ∠DNA +/- ∠DNC = 2(∠DMA +/- ∠DMC) = 


2∠AMC  =  2∠AM'C
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~UK/UN = ~MH/MD = 2~UM/UE = 2~UM/2UN


~UK = ~UM

As K ⇒ N,  and  D ⇒ H:


2~KU/UN =  2∠MNU = ∠MNH   ⇒  π radians
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Given constant ΔOSV:

∠FSV  is constant.


and since:

∠FSV + (θ + α)  =  

π radians,


(θ + α)  is also 
constant.
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2(∠FSV) + 2 (θ + α) = 2π
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When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α

When aw || sX, we have divided the doubled angle 

2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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