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who always taught the geometry first.
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Introductory 
Geometry
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∠DNA  =  2∠DMA 

∠DNC  =  2∠DMC


∠ANC  

=  ∠DNA  +/-  ∠DNC

= 2(∠DMA +/- ∠DMC)

= 2∠AMC = 2∠AM’C
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~UK/UN = ~MH/MD = 2~UM/UE = 2~UM/2UN


~UK = ~UM
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As K ⇒ N,  and  D ⇒ H:


2~KU/UN =  2∠MNU = ∠MNH   ⇒  π
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∠FDE + ∠DEF + ∠EFD = π

∠FDE =  ~EF/DM

∠DEF =  ~DF/DM

∠EFD =  ~DE/DM
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SD ||  FJ

ΔEJD ≅ ΔDFI,  FD/FI  =  JE/JD 

ΔEJS ≅ ΔEDI,  EI/ED  =  ES/EJ 

(FD)(EI) / (FI)(ED)

= (JE)(ES) / (JD)(EJ)  = SE/SF


IE/IF = (SE)(DE) / (SF)(DF)
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FE/FI   =   {(SE)(LF) + (SF)(LE)} / (SF)(LE)


LD || FE,      ~EL  =  ~FD,      ΔLSE  ≅  ΔFSI     

LS/FS  =  LE/FI,       LS  =  FS(LE) / FI 


LD || FE 


DE/DF  =  LF/LE 


IE/IF 

=  (SE)(LF) / (SF)(LE)
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Pythagorean’s Theorem can be shown when the 
cyclic quadrilateral SELF is a rectangle, and the 
law of cosines can be shown when it is a trapezoid.

Ptolemy’s Theorem: 
(FE)(LS)  =  (SE)(LF) + (SF)(LE)
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When the cyclic quadrilateral SELF 
is a trapezoid, and:


LF  >  ES  ||  LF


∠ELF = ~ESF/EU < ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF[LF - 2(EL)(LR/LE)]


LR/LE  =  UF/UE  =  cosine ∠ELF  
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When the cyclic quadrilateral SELF is 
a rectangle, so:


LF  =  ES  ||  LF


∠ELF = ~ESF/EU = ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF2
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When the cyclic quadrilateral SELF 
is a trapezoid, and:


LF  <   ES  ||  LF


∠ELF = ~ESF/EU > ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF[LF + 2(EL)(TS/SF)]


TS/SF  =  UF/UE  =  cosine ∠ELF  
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Refraction Along a 
Line

15

Let: 
(NK/NC)  =  (CN/CK) 

When: 
ΔCKP ≅ ΔKNP  
= ΔNSC = ΔKWB, 

ΔCKP = ΔBNA = ΔAOB 

and KW = YN 
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But also, whenever: 

KB2 = KN2 - BN2  
= KN2 - (AN2 - AB2)  
= (KN2 - AN2) + AB2 

and: 
AN2  -  BN2  =  BO2 -  AO2 

so: 
(AO2 + AN2)   
=  (BO2 + BN2)  =  YN2 
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if: 
(KB/KW) = (AB/AO) = (CK/CN 
so: 
KB2/KW2   
=  (AB2 + CK2)/(AO2 + CN2) 

and if: 
AN = CN, 
then: 
KW2 = (AO2 + CN2) = YN2 

KW = YN
18

As N ⇒ B,  KW ⇒ YN

because:

KW/OA  ⇒  NK/NA 

= NK/NC 

= OB/OA 

= WB/WK


so that:

KW  ⇒  OB  ⇒  YN

Under these conditions, it can also be 
shown that:
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As A  ⇒  K, 

KW  ⇒  YN

As A  ⇒  B, 

KW  ⇒  YN

|

|

|

|

|

|

|

|

|

|

|

|

and both that:
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Therefore, whenever 

A lies on KB 

of right triangle ΔKBN,

 

if:

ΔCNK  ≅  ΔAOB 

≅  ΔKWB, 

and NA = NC, 


then KW = YN
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OB/OA = NK/NA = N’K’/N’A


KW = YN      

K’W’ = YN’


KB/YN = K’B/YN’

|

|

|

|

|

|

|

|

|

|

|

|

QX/EN = KB/YN

= K’B/YN’ = QX/E’N’


EN = E’N’

Only one N’K’X 
exists for NKX since 
only one E’N’ exists 
equal to EN.
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E’ lies at E,  and 

N’ lies at N. 


Also, QX varies with 
EN because: 

QX/EN = KB/YN 

= KB/KW, which is a 
constant.


When EN is changed to become the smallest 
segment through Y, 

bound by the right angle EQN:
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NE || GL

TY || EL

HI || NM

HI = NM > NL


NL is the hypotenuse of 
right triangle NEL, so:


NL > NE

HI > NE

To specify EN as the shortest hypotenuse 
through Y:
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But also:


NE || GL

TY || NL

HI || EM

HI = EM > EL

EL is the hypotenuse of right triangle ENL, so:


EL > EN

HI > EN
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Let X = Z when EN is 
the shortest segment 
through Y included in 
right angle EQN.


In order to find Z 
given ΔYBN, we must 
find E = E’ using:

ΔYBN ≅ ΔNYT ≅ ΔNTE
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In order to find Z given ΔYBQ, we must find 

EN = E’N’ by making ΔTYE a right triangle.
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Draw a concentric 
circle around ⊙YBQ 
using its center at D, 
(the midpoint of 
hypotenuse YQ), 
containing an arc ~EN, 
so that YF lies on its 
chord EN. The arc 
intercepted by ∠DEN 
then equals that 
intercepted by ∠DNE. 
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∠DEY = ∠DNF 

DY = DF ;  DE = DN 


ΔEDY = ΔNDF

EY = NF


Since ΔQFN is a right 
triangle, so is ΔTYE.
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use ΔBNY to find ΔBKW and ΔQBY,


use ΔQBY or ΔBKW to find ΔBNY.

WK = YN


Given   ΔBAO:
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ΔNoNK ≅ ΔKNA

because:

~NS = ~NK

across diameter GoN.


Wavefront GoNo refracts 
into wavefront GN along 
GoN, since it travels GoG in 
the same time it travels 
NoN.

ℝ = NNo/GGo = NNo/NK = NK/NA
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and Z is the clear image of object A 
refracted at N (= N’), along BN, because 
the two possible refracted rays through Z 
coincide at N.

Therefore, if  

ℝ  =  OB/OA,  

and WK = YN; 

then, 

ℝ  =  NK/NA
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Refraction Along a 
Circle

33

ΔKNA  ≅  ΔOCP

ℝ  =  NK/NA 

=  N’K’/N’A 

=  CO/CP
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Real object A:


ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’
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Virtual object A, 
which can not be 
projected on a 
screen due to 
refraction at BN:


ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’

36



Real image at X, 

(will be defined as clear 
as N’ ⇒  N, and X  ⇒  Z), 
can be projected on a 
screen:


ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’
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Virtual image at X, 

(will be defined as clear 
as N’ ⇒  N, and X  ⇒  Z),

can not be projected on 
a screen:


ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’
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(AG + AN’)/2AN’  =  (QG + NN’)/2NN’

(XE + XN’)/2XN’  =  (EF + NN’)/2NN’


(QG + NN’)/(EF + NN’)  

=  [(AG + AN’)/2AN’][2XN’/(XE + XN’)]


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’)

⇒ (QG + NN’)/(EF + NN’)

⇒ (AO/AN)(ZN/ZP)
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Also, when HD = QN’  

and  RJ = FN’


(~QG + ~NN’)/(~EF + ~NN’)

=  2(~ND)/2(~NJ)  =  ~ND/~NJ


As  N’ ⇒ N,  X ⇒ Z,  and:

~DJ ⇒ line segment DJ, so:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ ND/NJ
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DS/JI = CO/CP

JI/JN = NP/NC

DN/DS = NC/NO

ND/NJ = (NP/NO)(CO/CP)


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ (NP/NO)(CO/CP)


and therefore:

(AO/AN)(ZN/ZP) ⇒ (NP/NO)(CO/CP)
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Thus ℝ  = CO/CP, and Z, (along both NP and CW), 
is the clear image of A refracted along ~BN, when: 

NT||CO, so: 

AO/AN = CO/NT and:


NW||CP, so:

ZN/ZP = NW/CP 
and: 


NW/NT = NP/NO

(ΔWNT ≅ ΔPNO)
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The off-axis rays from 
any on-axis object A, 
(real or virtual), can not 
form a virtual on-axis 
image at Z because 
NW must be less than 
CP for Z to be virtual; 
but NW must also be 
greater than NT.

43

The off-axis rays 
from any real 

on-axis object A 
can not form a real 

on-axis image at Z 
because NW must 
be greater than (or 
equal to) CP for Z 
to be real; but NW 
must also be 
greater than NT.
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The off-axis rays from a virtual on-axis 
object A can form a real on-axis image at Z, 
if NW is greater than CP, and WT lies along 
the axis.

45

Since: 

∠NWT = ∠NPO = ∠NCO   

and NW || CP


WT lies along the axis when:


ΔNCO ≅ ΔZCP
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When off-axis rays 
from a virtual on-axis 
object A form a real 
on-axis image Z, this 
occurs at all points N 
because:

ΔACN ≅ ΔNCZ for all N,

(since they share proportional sides 
around a common angle).
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This can also be demonstrated using similar right triangles: 

ΔSAN ≅ CON, and ΔYZN ≅ ΔCPN, 

so that: (AO/AN)(ZN/ZP) = (SC/SN)(YN/YC).


Since: CY/CN = CN/CS = (CY + CN)/(CN + CS) = NY/NS

(SC/SN) = (NC/NY), and:


(AO/AN)(ZN/ZP) = CN/CY
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But it is also true that: 

(CO/CP)(NP/NO) = CN/CY,  because:


(CO/CP)(NP/NO) = (LY/LN)(PN/PC) = 

= (QN/QY)(PN/PC) = (QN/QY)(ZN/ZY) = 

QN (ZN)/QY(ZY) which, by the property of cyclic 
quadrilaterals shown in slide #7, equals CN/CY
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Keeping:


ℝ  =  (CO/CP)  =  (NO/NP)(AO/AN)(ZN/ZP)


constant,  as  N  ⇒  B:


(BC/BC)(AC/AB)(ZB/ZC)  ⇒  ℝ
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Refraction Through a 
Circle’s Center

(Axial Refraction)

51

Refraction through a circle’s center occurs 
when N lies at B, so that an object’s ray 
from A to N lies along ABC, and an image 
ray lies along BCZ. The locations of the 
object A and image Z along the optic axis 
BC are described by the equation:


ℝ  = CO/CP = (AC/AB)(ZB/ZC) 
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If we draw A and Z along 
the optic axis BC as if it 
were a circle, and draw 
CDL so that AL || ZB:

ΔACB ≅ ΔZCD, and:

(AC/AB)(ZB/ZC)  =

(ZC/ZD)(ZB/ZC)  = 

(ZB/ZD)

so as the reference circle’s 

radius  ⇒  ∞,

(ZB/ZD)  ⇒  ℝ

53

AL  ll  ZB

AZ  =  BL

~AZ  =  ~BL


HZ  ll  CL

ZC  =  LJ

~ZC  =  ~LJ


~AZ + ~ZC  =  ~AZC

~BL + ~LJ  =  ~BLJ


~AZC  =  ~BLJ

AJ  ll  CB
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HZ  ll  CL

ZB/ZD  =  HB/HC

ΔHBZ ≅ ΔHJC

when ΔHJC  =  ΔIAB:

HC  =  IB, and:

IB/IA  =  HZ/HB


This results in 

Newton’s Equation:

as the reference circle 
radius  ⇒  ∞,

(AI)(ZH)  =  (BI)(BH)
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ΔHCZ ≅ ΔHJB ≅ ΔBAZ

(HC/HZ)  =  (BA/BZ)

[1/(HZ)(BA)]  =  [1/(HC)(BZ)]
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as the reference circle’s radius ⇒ ∞,

[1/(HZ)(BA)]  =  [1/(HC)(BZ)]  ⇒  ℝ/(HB)(BZ)

and the resulting possible sums occur:


HZ  =  HB + BZ

HB  =  HZ + BZ

BZ  =  HZ + HB


which, when multiplied by the above three 
factors, form the conjugate foci equations. 
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The conjugate foci equations allow for 
the effect of axial refraction at a circle 
to be expressed as the term:


 (1/HC)  =  (ℝ/HB)


which is then additive with object 
vergence, defined as (1/BA); or image 
vergence, defined as (ℝ/BZ).
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Afocal Angular 
Magnification/Minification

59

When off-axis 
distance refraction 
at ~JDE is followed 
by refraction into 
distance at ~QGS 
along axis DGF as 
shown; 

as ∠JFD  =  ∠SFG, 
and both approach 
zero: 
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Or when off-axis 
distance refraction at 
~JDE is followed by 
refraction into 
distance at ~QGS 
along axis FDG, as 
shown; 

as ∠JFD  =  ∠SFG, 
and both approach 
zero:
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θ/α  ⇒  (~LD/GD)/(~YG/GD)  as P  ⇒  F

θ/α  ⇒  (FD/FG)   as P  ⇒  F

so that afocal axial angular 
magnification/minification equals:


FD/FG
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Retinal Image Size 
Magnification/Minification

63

The top diagram 
illustrates a standard 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HoZo.
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The bottom diagram 
illustrates any 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HZ.
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As  N  ⇒  B,  the retinal image size 
magnification,  ZH/ZoHo,  (relative to an 
arbitrary standard which factors out with 
subsequent comparisons), then approaches 
its axial value:


ZQ/ZoQo   =   ZC/ZoCo   =   HC/HoCo 


=   (BH/ℝ)/(BHo/ℝ)  =  BH/BHo
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Distance Correction 
Magnification/Minification 

67

Once again representing the 
optic axis BCZ as a circle of 
infinite radius, the distant 
object A at ∞ is focused by 
the radius BC of the 
presumed single refracting 
surface towards the axial 
image Z, which lies at the 
retina H when there is no 
distance refractive error. (BHo 
represents the standard axial 
length, and BCo represents 
the standard single refracting 
curvature radius).
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As pictured in the next three slides, 
additional refraction G (at B) will create an 
“ametropic” eye, with “distance refractive 
error,” and a combination curvature effect 
with total radius BL instead of BC, moving 
image Z from the retina at H to its erroneous 
location at E. The “front focal point” of the 
“ametropic” eye is defined as point I. 

A “distance correction” must focus the 
distant object towards F, so that JF || BL, in 
order to move image Z back to the retina H.

69 70
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The distance 
correction at D:
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Since the distance correction D moves image Z 
from E to retina H, rays leaving the refractive 
error G (at B) after this correction is in place must 
be afocal. This results in afocal axial angular 
magnification equaling:


FD/FG  (=  FD/FB)


Therefore, the total axial magnification of 
distance correction equals:


M  =  (BH/BHo)(FD/FB)
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When the front surface of a spectacle lens that 
corrects distance refractive error is not flat, it is 
convex; and adds an additional “shape” factor, 
(fq/ft), to the afocal axial magnification of 
distance correction. (Point “t” lies at D, and 
FD/FB remains the “power” factor of the afocal 
axial magnification of distance correction). 
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“Axial Ametropia” occurs when E is at Ho, (and point I 
is therefore at Io, the front focal point of the standard 
eye). The distance refractive error is then completely 
due to an axial length BZ, (or BH), that is not standard.


ΔHoBH  =  ΔEBH ≅ ΔEJL  =  ΔIoFB

(BH/BHo)  =  (FB/FIo)


M  =  (FB/FIo)(FD/FB)  =  FD/FIo


Therefore, in the case of axial ametropia, there is no 
total axial magnification of distance correction if the 
correction D lies at Io.
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“Refractive Ametropia” occurs when the retina H 
is at at Ho. The distance refractive error at G 
moving image Z to E is then completely due to a 
refracting radius BL that is not the standard BCo.


When the distance correction D lies at B:


M = (BH/BHo)(FD/FB) = 1

77

Near Correction 
Magnification

78

There is no afocal axial 
angular magnification 
of distance correction 

with a distant object 
“A,” and an emetropic 
eye whose refractive 
error at G (at B) is by 
definition zero, (with its 
focal point F at infinity).
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There is also no afocal axial 
angular magnification 

when object A is at the 
front focal point F of an 
uncorrected ametropic eye 
as shown, since this 
“myopic” system is not 
afocal, and involves only 
one refracting element G.
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A distance myopic 
correction at D 
creates afocal axial 
angular minification:


FD/FG   <  1  

and this is relative to either the myopic eye 
with object A at its front focal point F, or the 
emetropic eye with object A at distance.
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Removing the 
myopic distance 
correction at D with 
a converging lens 
at D removes this 
afocal axial angular 
magnification with 
the factor:

FG/FD  >  1


and this magnification of near correction is 
relative to the distance corrected myope.
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If additional converging 
power is added to the 
converging lens so that 
the near focal point is in 
focus for an emetropic 
eye, which we then 
consider to be the 
reference eye, the 
magnification of near 
correction is still that 
which is removed with the 
factor:

        FG/FD  >  1

83

Near Object Positional 
Magnification

84



When an object at a 
standard distance 
Fs is moved to F: 

85

The object angular 
subtense 
magnification

equals: 

θ/α   =  (~GFs/BFs)/(~EFs/BFs)
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as    XFs  ⇒   0

the object angular subtense magnification 
approaches its axial value:


θ/α  ⇒  WFs/XFs  =  WFs/YF  =  BFs/BF

which equals the axial 

object angular subtense magnification. 
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Total Near 
Magnification

88



The ratio describing axial object angular 
subtense magnification:


BFs/BF


when multiplied by the ratio describing near 
magnification due to a single converging 
lens producing parallel light for an 
emmetropic eye:


FB/FD
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produces a ratio which factors out the 
object’s actual distance to the eye, 
confirming that when a converging lens is 
used with its front focal point at the 
object, so that parallel light leaves the 
converging lens from the object, the 
image size is the same regardless of the 
object-to-eye distance.
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Double Refraction 
Systems

91

When the 
converging lens 
at D is split into 
two converging 
lenses:
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with the same 
combined 
focus F:
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the ratio describing axial near magnification 
due to a single converging lens producing 
parallel light for an emmetropic eye:


FB/FD


must be expressed as if all convergence 
occurred at a single unknown axial point De:


FB/FDe

94

De can be located using 
triangles.


D₂G/D₂F  =  DeQ/DeF

     

D₂G/D₂F₁  =  D₁J/D₁F₁

D₂F(DeQ/DeF)  =  D₂F₁(D₁J/D₁F₁) 

                                

DeQ/DeF  =  (D₂F₁/D₂F)(D₁J/D₁F₁)  


1/DeF  =  (D₂F₁/D₂F)(1/D₁F₁) 


FB/FDe  =  (D₂F₁/D₂F)(FB/D₁F₁)    
95

Multiplying the axial object subtense 
magnification by the axial 
magnification of near correction 
(relative to the same eye without 
refractive error) produces:


BFs/FDe  =  (D₂F₁/D₂F)(BFs/D₁F₁)

96



The converging lens D2 creates a virtual image 
F1 of an object at F. When considering a stand 
magnifier with lens D2, constant stand height 
D2F, and reading spectacle add or ocular 
accommodation D1, the stand magnifier’s 
(constant) enlargement of the object at F equals: 


E  =  D2F1/D2F


The stand magnifier’s axial magnification is its 
(constant) enlargement factor E, multiplied by 
what would be produced by D1 alone, if the 
object A were at F1.
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Crossed Cylinders 
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It is useful to know the meridian of maximum 
axial refraction when combining the effects of 
two cylindrical refracting surfaces at an 
oblique axis. To do this, we need to first 
describe how their axial radii of curvature 
change with various meridional cross sections. 
Meridional cross sections of cylindrical 
surfaces are ellipses until they become parallel 
lines along the cylinder axis.
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However, assuming a cylinder is parabolic 
rather than spherical, and that meridional 
cross sections are parabolic until they rotate 
into a single line parallel to the cylinder axis, 
allows for an approximation of the axial radii 
of curvature of these meridional cross 
sections. When these axial radii of curvature 
are expressed in forms that are additive in 
terms of refraction, we can then find the 
maximum sum of those expressions in terms 
of the meridional axis. 

100



With any axial radius of curvature CB, and 
index of refraction ℝ, the axial image of a 
distant object lies at H when:

ℝ  = HB/HC

101

The axial refractive effects of compound 
refractive surfaces at B are additive only as their 
refractive "powers," which equal:

 ℝ/HB  =  1/HC  =  [(HB - HC)/HC]/CB  =  (ℝ- 1)/CB

                  

102

All parabolas have the same shape, in the 
same way that all circles have the same 
shape. However, while circles have a single 
(internal) determining constant, the radius of 
curvature, parabolas have both a 
determining constant internal and external 
to the curve, and can be defined by either.  

103

For example, a parabola's external determining 
constant equals BK when: 

[2(SN) equals the sagitta corresponding to the 
sagittal depth SB].

SB  =  BT

BT      BK

104



We can set up the necessary 
off-axis conditions to 
determine a parabola's axial 
center of curvature in terms 
of its internal determining 
constant XB, by involving ZN 
in the geometric solution for 
XB.

105

We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the determining geometrical 
relationships axial as N ⇒ B, they should also 
depend on line NP being parallel to the axis, and 
XP being parallel to ZN.  

106

Since as N ⇒ B, Z ⇒ C by definition, and 
since XP = ZN, P will remain external to 
the curve, and X can therefore not be its 
axial center of curvature, but must 
instead lie somewhere along CB. 
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In order to maintain ZN perpendicular to the 
parabola at N as N ⇒ B, the same geometrical 
relationships must exist that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)

108



Since:


TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

We know the external determining constant BK 
equals 2(CB), and the internal determining 
constant XB equals (CB)/2. 
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Axial refracting power equals      (ℝ- 1)/CB

                                                       

Since for a parabola:


SB/SN  =  SB/TB  =  TB/[2(CB)]

           

If      ℝ  = 1.5


The axial refracting power of a parabola 
equals:


1/[2(CB)]  =  SB/SN2   =   1/BK

110

When 2(SO) equals the minimum sagitta of an 
oblique parabolic cylinder, and when with equal 
sagittal depth SB, 2(SV) equals the minimum 
sagitta of a more highly curved parabolic cylinder 
with a horizontal axis:

111

Keeping ΔOSV constant, as we rotate circle SOG 
with variable diameter SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα

112



As O' ⇒ O

SV' increases more than SO' decreases
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As V' ⇒ V

SO' increases more than SV' decreases
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Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations produce 
only minimal changes in (SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, this 
process can be taken to its limits to determine 
the meridian with minimum  (SO' + SV') using:


Limit  Δ(SO')       =        Limit  Δ  (SV')

Δθ ⇒0                           Δα ⇒0  
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However, the combined effects of refraction 
are additive only as refractive powers, 

which, when  ℝ  = 1.5,  equal:


 SB/(SO')2   and    SB/(SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
using:

Limit  Δ    [SB/(SO')2]   =    Limit  Δ     [SB/(SV')2]

Δθ ⇒0                                Δα ⇒0      


To solve this equation, all variables must be 
expressed in terms of the variables approaching 
zero,   so: 
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Limit  Δ{[SB(SO/SO')2]/SO2}   =  Limit  Δ{[SB(SV/SV')2]/SV2}

Δθ ⇒0                                        Δα ⇒0   


Limit  Δ{[(SB)sin2 θ]/SO2} =  Limit  Δ{[(SB)sin2 α]/SV2}

Δθ ⇒0                                  Δα ⇒0   


(SB/SO2)   Limit   {Δsin2 θ}  =  (SB/SV2)   Limit   {Δsin2 α}

                 Δθ ⇒0                                    Δα ⇒0   
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{Limit as Δθ ⇒ 0 of [Δsin2θ]}/{Limit as Δα ⇒ 0 of [Δsin2α]}       


     =  [SO2/SV2]
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Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0

on the reference circle:

AW ≥ LD || AW

∠ALD  =  ~AID/AI 

≥ ~AI/AI = π

                       

Establish the necessary functions of θ in terms 
of line segments and chords.
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θ = ~AL      ;   sin2 θ = AL2

        AI                        AI


Δ θ = ~LD   ;   sin2 Δ θ = LD2

            AI                        AI


(θ + Δ θ) = ~ALD       ;     sin2 (θ + Δ θ) = AD2

                             AI                                         AI


cos θ = IL                  ;     cos (θ + Δ θ) = DI

             AI                                                AI


sin θ = AL  = JL         ;     sin θ cos θ = JL  IL

            AI       IL                                     IL  AI


2 (sin θ cos θ) = ML      = sin 2θ

                          AI
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Then consider the following property of the cyclic 
quadrilateral circle ALDW:  AD(LW) = AL(DW) + LD(AW)  


ΔDIA  ≅  ΔEWD  =  ΔXLA  ;  AD2 = AL2 + LD(AW)


AW = LD + 2(AL) LX   ;   AW = LD + 2(AL) ID   

                            LA                                  IA

                  


AD2 - AL2  =  LD2 + 2(LD)(AL) ID

                                               IA
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AI [sin2(θ + Δθ) - sin2θ] = 


AI [sin2Δθ] + 2(LD)(AL)cos(θ + Δθ) =


AI [sin2Δθ] + 2(LD) [(AI)sinθ] cos(θ + Δθ)


Divide both sides by AI:


sin2(θ + Δθ) - sin2θ = sin2Δθ + 2(LD) sinθ cos(θ + Δθ)


Limit     Δ(sin2 θ)   =  2 sinθ (cos θ)  =  sin 2θ

Δθ ⇒0     ~LD
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Therefore, the meridian with the maximum 
combined effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV 
into SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  = Sj  ⊥  SV to construct:
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Sj   =  SV       ;        Sj2   =   Sj   =   SO2


SV      Sb                SV2       Sb       SV2

Similar triangles 
show that:


SO2    =    aS

SV2           aV
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Draw ad || SO


Choose a circle 
through S and V 
with a variable 
diameter SV' so that 
FZV lies on a 
common chord.
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The easiest way to do 
this involves a template 
of various circles, each 
with the location of their 
diameters already 
marked. 
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SV' is the meridian 
with the maximum 
combined effects 
of refraction 
because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Double-angle Method:
Given constant ΔOSV:

∠FSV is constant

∠FSV + (θ + α) = π

(θ + α) Is constant

We have already shown 
how to find 

single angles θ + α  

so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α
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An angle on a circle 
equals its inscribed 
arc, divided by the 
arc's diameter. Since 
the sum of all angles 
measured on a circle's 
circumference add to 
π, when measured 
from a circle's center 
they add to 2π.
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Therefore:


2(∠FSV) + 2 (θ + α) = 2π
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When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α

When aw || sX, we have divided the doubled angle 

2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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