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Friedrich Schiller, in his 27 letters on the Aesthetic
Education of Man(kind), stated that play is the act
of balancing abstract thoughts regarding
what should be, with our perceptions of what
actually /s. He stated that it is necessary for the
determination of beauty, defined as the
connection between the actual, and the ideal
which is unknowable In its entirety. It is with this
sense of play that William Brown, PhD. introduced
geometrical optics during my freshman year of
optometry school in 1979. This aesthetic
education provided for the continued construction
of context out of the free interplay of content and
form, as well as over three decades of fun.



The playground on which | present the results is that of
the circle. | begin there because our heads are already
full of ideas about how its pieces fit. For example, we
may believe that parallel lines intersect it across equal
arcs, since that makes sense to us. From there we can
see that equal arcs along a circle subtend equal angles,
and that certain triangles within a circle can therefore be
shown to have the same shape, with their sides forming
ratio equalities. Quadrilaterals with corners along the
same circle can then describe equalities with multiple
ratios. In 1667 Isaac Barrow used this to find triangles
using other triangles, and describe tangential refraction
along a line and at a circle. This approach requires no
math beyond plane geometry, and encourages a spatial
understanding devoid of sign convention and jargon.



For those clinicians wishing to have more than a
working knowledge of axial magnification, | have
drawn geometric figures to cover the necessary
preliminary concepts. Axial magnification Is
presented only after a thorough spatial
representation of tangential refraction along a
line and a circle. In order to visualize the relevant
axial ratio equalities involved using triangles, the
optic axis Is then represented as a circle of
infinite radius, and the sign convention remains
unnecessary.



Section 1

Geometry of the Circle



Figure 1:

Given a circle with diameter EU and center N:




Figure 2:

Any two equal arcs ~ES and ~RJ can be shown to subtend
equal angles by drawing any two parallel lines SD and JF:

< - ~SF = ~JD

~ES + ~SF =~RJ + ~JD

5 R ~EF = ~RD

ED || RF



Since equal angles along a circle therefore
subtend equal arcs, any angle along any circle
can be defined in terms of its subtended arc
and the circle's diameter. For example:

<RFJ = ~RJ

EU
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Figure 3:

Triangles need only two equal angles to be the same
shape, (or =).

Since equal arcs subtend equal angles along a circle:

< 3 A AEJD = ADFI
5 FD = JE
£ £ FI JD
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~Sd = ~FD

AEJS = AEDI
El=ES
ED EJ

FD.El = JE.ES = SE
F.LED JD.EJ SF

IE = SE.DE
AY IF SFDF

N

which describes an important property of any
cyclic quadrilateral SEDF.
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Figure 5:
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LD || FE

E=LF

DF LE

IE =SE.LF
IF SELE

FE =SE.LF + SELE
o SF.LE




LD || FE

~EL = ~FD

‘ ALSE = AFSI
E
£

LS = FS.LE

g L\ F

FE.LS = SE.LF + SF.LE

which describes an important property of any
cyclic quadrilateral SELF.
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Figure 7:
<KNU = :-MDH

~UK = ~MH = ~MH

UN  MD UE

= 2(~UM) = 2(~UM)
UE  2(UN)

<KNU =2_MEU
~UK = ~UM
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Figure 8:

Let K = Nand D = H:

N\

16

~UK = ~MH = ~MH = ZM!
UN MD UE

~UK = 2ZMNU
UN

2(~UK) = £ZMNH ==
UN

(1]



Section 2

Refraction Along a Line



Figure 9:

(KW)= NK = NK = OB = WB
(OA) NA NC OA WK

KW (=OB) = YN
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Figure 10:

19

Create right triangle NBK.

When A lies at B:



Figure 11:

20

When A lies at K:

KW = YN = infinity



Figure12:

when:
SC=BWI SC
KW = NS

NS = NS
NC NA

NC = NA
NB NB
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Figure 13:

if: NS =NC
NC NB
then: NK = NA
NC NB
NA || SC

KW (= NS) = YN
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It is obvious that as A approaches K from B, the
relative rate that YN and KW approach infinity
does not plateau, peak, or dip. Since we have
shown that YN = KW when A lies at a point along
BK other than B as well as at B, we have shown
that YN = KW for all points A along BK.
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Figure 14:

24

B=NK=NK

A NA NA

o

KW = YN

KW’ = YN’

KB =K'B

YN YN




Figure 15:

As the equal
lengths of EN and
E'N’ rotate about
Y until they
overlap, they
approach their
minimum which
also occurs when
N’K’X" and NKX
overlap.

QX = KB = KB = QX
EN YN YN EN

only one N’K’X exists for NKX
because only one E’N’ equals EN
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Figure 16:

Let X = Z when
both NKX and

N’K’X overlap, £
which occurs when

W

EYN is the shortest e
line segment \ N {

through Y

connecting line QB
to its perpendicular

at Q. This occurs
when: because:



Figure 17:

LH | ND

LH > NF > NE

holds true as:

H = E
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Figure 18:

CQ' || ES
CQ'>EG > EN

holds true as

Q' =N
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Figure 19:

X = Z when:

BN = RT = RT

BY RY BN

BN* = RT = YE = KX
BY? BY YN KN
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Figure 20:

given AYBN, find AYBQ using:

AYBN

IR

ANYT = ANTE
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Fi gure 21: given AYBQ, find AYBN by making:

EY = NF
E
v which occurs when ~EN lies on a circle
i concentric with circle YFBQ
\ because:
N
DY = DF

AEDY = ANDF

EY = NF

31



Before considering refraction along a line,
picture yourself sitting on the beach watching
waves roll in. Notice that even when
wavefronts far out in the ocean are traveling
perpendicular to the beach, they become
closer to parallel with the beach as they
crash. On beaches that are long and sloped,
or have many sandbars, these wavefronts all
crash parallel to the beach, regardless of
their orientation in the open ocean.

32



Now picture yourself in a car applying brakes
while driving. If the brakes on the front right
wheel grip harder, the car will turn to the
right. This is intuitive. For the same reason,
when a wavefront hits a sandbar at an angle,
one side of the wavefront will slow before the
other, and this will tend to turn the wavefront
parallel to the beach. This essentially
represents refraction along a line.
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Figure 22:

~NS = ~NK

2=
|
Z
Z
O
|
Z
Z
o)
|
=

GGo NK NA

wavefront GoNo refracts into
wavefront GN along GoN,
because it travels GoG

in the same time 1t travels NoN
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Figure 23:

U

’ /ﬁi /T/ If R = 0B and KW = YN:
|

| OA
{2

I. ; -

(s A < R:N

o

Z
>

T N

and Z is the clear image of object A refracted at N
along BN.

given ABAO:
use ABKW or AQBY to find ABNY.
use ABNY to find ABKW or AQBY.
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Section 3

Refraction Along a Circle



Figure 24:
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Figure 25:

AANN’

1R

AAQG
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Figure 26:
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Figure 27:

the virtual object A can not be
projected on a screen
due to refraction at BN
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Figure 28:

AXNN’ = AXFE
the virtual image (Z) can not
be projected on a screen
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Figure 29:

the real image (Z) can be
projected on a screen

AG + AN’ = QG + NN’
2AN’ 2NN’
XE + XN = EF + NN’
2XN’ 2NN’

QG + NN’ = (AG + AN’) 2XN’
EF + NN°  2AN’ (XE + XN)
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Figure 30:

43

HD = QN’
RJ = FN’

as N'= N:
X=/Z, and ~Dd= DJ

so that:



Figure 31:

DS = CO
J1 CP

J = NP

DN = NC
DS NO

ND = NP CO
NJ NO CP
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thus, as N = N and X = Z:

~QG + ~NN° = QG + NN’ =
~EF + ~NN’ EF + NN’

AO ZN
AN ZP

and:

~QG + ~NN’ = 2(~ND) =
~EF + ~NN’ 2 (~NJ])

ND = NP CO
NJ NO CP
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Figure 32:

NT || CO
NW || CP
when X = Z lies along

both NP and CW:

AO ZN = CO NW
AN ZP NT CP
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when AWNT = APNO, NW > NT

and

AOZN = NP CO
AN ZP NO CP
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so 1f:

NT || CO

NW || CP

and AWNT = APNO:

R= CO
el

and Z is the clear image of object
A refracted at N along ~BN
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Figure 33:

Off-axis rays from any
on-axis object A, (real
or virtual), can not
form a virtual on-axis
iImage Z because NW
must be less than CP
for Z to be virtual; but
NW must also be
greater than NT.
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Figure 34:

50

Off-axis rays from any
real on-axis object A
can not form a real on-
axis image Z because
NW must be greater
than (or equal to) CP
for Z to be real; but
NW must also be
greater than NT.



Figure 35:

Off-axis rays from a virtual on-axis object A can form a real
on-axis image Z because NW must be greater than or equal
to CP for Z to be real; and NW must also be greater than NT.
When WT lies along the axis, so does Z. This occurs when:

o : e—
' | o v NT | CO

—

P > J—‘"\ ‘

NW || CP
AWNT = APNO
/< /NWT = «NPO = «NCO

ACPN = ACOA

o1



Figure 36:

AACN

1R

When off-axis rays from a
virtual on-axis object A
form a real on-axis image
Z, this I1s the on-axis real
image of the on-axis virtual
object A at all points N
because:

ANCZ forall N

b2



Figure 37:

This can also be demonstrated
by constructing:

SC/CN = CN/CY

03



CY = CN = CY + CN = NY
CN CS CN + CS NS

AO ZN = SC ZN = NC ZN =
AN ZP SN ZP  NY ZP

NC YN = CN
NY YC CY

CO NP = LY PN = ON PN =
CP NO LN PC QY PC

ON(ZN) = CN
QY (ZY) CY
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Section 4

Axial Refraction at a Circle



keeping:

R = CO = NO AO ZN

CP NP AN ZP

constantas N = B:

BC AC/ZB = R
BC AB ZC
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Figure 38:

“axial” refraction can be described along a circle
of infinite radius

draw CDL so:

AL || ZB so:

12

AACB = AZCD and:

AC 7ZB = ZC ZB = ZB
AB ZC /D 7C ZD

so as theradius =2 o©

/B = R
/D

of



Figure 39:
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AL Il ZB
AZ = BL
~AZ = ~BL

HZ Il CL
/C =LJ
~LC = ~LJ

~AZ + ~ZC = ~AZC
~BL + ~LJ = ~BLJ

~AZC = ~BLJ
Ad Il CB



Figure 40:

H
®

Oy

R

L

<
@
= B

~N

2
L
A
Ry > -
A
X

HZ Il CL

B=HB

HC

N
O

AHBZ = AHJC

when AHJC = AlAB:

09



Figure 41:

12

AHCZ

IR

AHJB = ABAZ
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AHCZ = AHJB = ABAZ
HC = BA
HZ BZ
as theradius =
| = | = R
HZ (BA) HC (BZ) HB (BZ)

These equalities are used with the following possible sums
resulting from the circle with infinite radius, to produce the
conjugate foci equations:

HZ=HB + BZ or
HB = HZ + BZ or
BZ = HZ + HB

O



Section 5

Afocal Axial
Angular Magnification



Before considering afocal axial angular
magnification, imagine two cars driving down
the same street. When one car passes a sign
post, it speeds up until it reaches the next
sign post, then slows back down to its
original speed, which is the same speed of
the other car. Not only will the car that sped
up be further down the road, it will also have
had a greater average speed during the trip.
This effect depends on two factors. The first
Is the degree to which the car speeds up
between the sign posts, and the second is the
distance between those sign posts.
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This metaphor can be used to illustrate afocal
axial angular magnification, which simply
depends on two factors. The first is the degree
to which light rays change between two lenses
or refracting surfaces. The second is the
separation of those two lenses or refracting
surfaces. This is why a collapsible telescope
no longer magnifies a distant object when it is
“collapsed,” and its lenses are no longer
separated.
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Figure 42:

65



In figure 41, given distance refraction at ~JDE
followed by refraction into distance at ~QGS along
axis DGF:

as angle JFD = angle SFG, and both approach zero,

0 > ~LD/GD as P = F

o ~YG/GD

6 = ED

= F
" FG as P

66



Figure 43:

6/



In figure 42, given distance refraction at ~JDE
followed by refraction into distance at ~QGS along
axis FDG:

as angle JFD = angle SFG, and both approach zero,

0 > ~LD/GD as P = F

o ~YG/GD

6 = ED

= F
" FG as P

63



Section 6

Clinical Determination of
Axial Retinal Image Size
Magnification




Figure 44: From figure 13, recall the

“continued proportion”

J /D\ i g
§ ; NS = NC
N : NC NB
e C
and notice that:
NK = KN + KG
> NB GP
which equals:
ANBK = AGKP

NK + NB
NK

70



We have just shown that:

“’\/Kr\—\—ﬁ_{%:(
NS N | + |

Since we have shown that neither NK or NB
can measure the other length, we have shown
that there is no length relative to itself, (“unit
length”), that will measure all finite lengths.
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This is relevant in any discussion of
magnification. We can either consider such
non-measurable distances to be irrational
numbers, which are continuing fractions, or
we can consider “number theory” itself to
be irrational, along with the presumption
that anything, even a unit measurement, can

be real defined by itself.

(2



Axial retinal image size magnification is not a
number, but rather a ratio. It therefore requires
a standard retinal image size for comparison.
It is fair to call any such magnification using a
standard, which is by definition arbitrary,
meaningless in and of itself. However, it is
simply a tool to use for comparing
magnifications. Such comparisons are
meaningful and not arbitrary, because
arbitrary standards factor out when
comparing ratios.
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Figure 45;

The top diagram
references the
standard eye. The
bottom diagram
references any
eye used for
comparison, with
the retinal image
size designated
as HZ.
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7O ZC = HC = BH/R
ZOQO ZO CO HO CO BHO/R

as N = B:

M = Z0 BH
Z0Qo BHo
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Figure 46:

H. Ce ™\ R

In order to find the magnification M, (in this case that
of retinal image size magnification), we need to know

both the standard BHo, as well as BH for the eye In
question. When a distant object is focused at Z, and
a distance refractive error exists, Z lies at E rather

than at H.
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using BHo as the chosen ocular standard where:

R = HB = HB =EB =4
HoCo HC EL 3

and R = 60 diopters
BHo

(where a diopter 1s a unit of inverse
meter length)
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Measure BL to find:

/8



or

79



note that the condition producing a virtual image

at H:
E B
| | | | |
Z L G F H
l = R + R_
BF BE BH

IS meaningless when considering the focused axial image
size magnification BH/BHo when the standard image is real.

80



Figure 47:

BL Is found

by changing BX

to clearly focus

the reflected image V
of light source T
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Figure 48:

82

make T = X

so that 2BU = BL

and ZNBU = =
2

so that:

XT — UX — 2UX « 2VW

XW UB BL BL

with a very small XT
measure XW and VW
to approximate BL



only the corneal component K when its deviation from the standard 42

of R can be approximated with is assumed to equal the deviation
BE of the total R
BL from the reflection off B BE

from 1ts standard of 60:

K+ (42 - K) = 42

R_ + (42 - K) = 60
BE

R = K+ 18

83



and since:

BHo R
M= __ 60
R + 1
BE BF

(Note that the traditional sign convention when considering the
distance correction 1/BF allows for the +/- sign to be replaced by
simply a + sign).

84



When the retinal image size magnification of two
real eyes are compared, retinal image size
magnification loses its arbitrary nature resulting
from its presumed standard. However, that does
not address the arbitrary assumption in this
calculation that magnification differences
between two eyes result solely from their front

surfaces. This calculation is only as correct as
that assumption.
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Section 7

Axial Magnification of
Distance Correction



Figure 49:

Standard

emmetropic eye:

Non-standard

emmetropic eye:
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Figure 50:

Additional refraction
at G (at B) creates
distance refractive
error with combined

curvature of radius
BL.

838




Figure 51:

The distance
correction must
focus infinity (A)
at F so that:

JF Il BE

89



Figure 52:

since the distance correction
at D moves Z to H
rays leaving G after this correction are afocal
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Figure 53:
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M = BH ED
BHo kB

AEBH = AEJL

when E 1s at Ho:
AEJL = AlocFB so:

M = FEB ED
Flo FB




Note that when all the refractive error is

due to the retina H lying at a position other
than the standard, in other words, all the
error IS “axial” in nature, which occurs

when E 1s at Ho:

The magnification equals one when the
distance correction at D lies at the
standard eye’s front focal point.
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Figure 54:

placing t at D:

M = BH FD fg
BHo FB ft

when the front surface of a spectacle lens that
corrects distance refractive error 1s not flat

it 1S convex

and produces additional

axial afocal angular magnification

94



In summary:

where:

axial magnification of distance

correction equals: BH = axial corrected image
BHo  size magnification

M = BH FD fg
BHo FB ft and:

FD fq = axial afocal angular
FB ft magnification of
distance correction

FD = “power factor”
FB
fg = “shape factor”
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Section 8

Axial Magnification of Near
Correction

96



Figure 55:

There is no afocal
e angular
magnification when
object A is at the
front focal point of
a myopic eye,

or at distance
with an

e b emmetropic eye.
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Figure 56:

However, a distance

N myopic correction at D
s A creates afocal angular
e a0 magnification;
5 N FD < 1
FG

and this is relative to both the myopic eye with
object A at the myopic eye's front focal point F,
as well as the emetropic eye with object A at
distance.
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Figure 57:

Removing the
myopic distance
correction at D with a

Pinil s
O < converging lens at D
et removes this afocal
\JJ angular magnification
e FA with the factor:
FG > 1
FD

and this magnification of near correction is
relative to the distance corrected myope.

99



(Figure 55):

100

It IS not relative to
either the myope,

or an emmetrope.



Figure 58:

If additional converging power is added to the
converging lens so that the near focal point is in focus
for an emetropic eye, rather than the myopic eye, the
afocal angular magnification removed with the factor:

FG > 1
FD

remains the same, and the reference eye is
emetropic.
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Figure 59:

When the converging lens at D is split into two
converging lenses:
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Figure 60:

With the same combined focus F:
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Figure 61:

and equals:

FG = FB
FDe FDe

104

The axial magnification
of near correction can
be specified as that
produced

as If

all convergence occurs

at a single unknown
axial point De



Figure 62:

105

De can be located
using triangles:

D,g = Deq
D,F  DeF
D.g = Dy

D,F,  DF;



Figure 63:

D2F Deg — D2F1 Q‘l.]_
DeF D, F;

1 = Dy 1
DeF D,F  D;F,
FB_ = D, FB
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Figure 64:

When an object at a standard distance Fs is
moved to F:
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Figure 65;

The near object angular subtense magnification

108



_ ~gFs/BFs
b/a = ~eFs/BFs

as YF = xFs = 0

wkFs = BFs
B/a = - T = aF

=
T1
)
I

which equals the axial near object angular
subtense magnification.
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Multiplying the axial near subtense
magnification by the axial magnification of near
correction produces:
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Since the converging lens at D> creates a
virtual image at F1 of an object at F, so that
the enlargement of an object at F created by
D> equals D2F1/D2F; when the diagram
represents a stand magnifier with lens Do
and stand height D2F, and the reading
spectacle add is D4, (or the ocular
accommodation is D1 at B), the
magnification produced by the stand
magnifier is its (constant) enlargement
factor, multiplied by that produced by D+
alone.
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The ratio describing near object axial angular
subtense magnification:

BEs
BF

when combined with the ratio describing near
magnification due to a single converging lens
producing parallel light for an emmetropic eye:

EB
FD
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produces a ratio product which factors out
the object’s actual distance to the eye,
confirming that when a converging lens is
used with its front focal point at the near
object, (and therefore parallel light leaves the
converging lens from the object), the image
size Is the same regardless of the object-to-
eye distance.
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