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For those clinicians wishing to have more than a 
working knowledge of axial magnification, I have 
drawn geometric figures to cover the necessary 
preliminary concepts. Axial magnification is 
presented only after a thorough spatial 
representation of tangential refraction along a 
line and a circle. In order to visualize the relevant 
axial ratio equalities involved using triangles, the 
optic axis is then represented as a circle of 
infinite radius, and the sign convention remains 
unnecessary.
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Section 1 

Geometry of the Circle 
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Figure 1:

Given a circle with diameter EU and center N:
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Any two equal arcs ~ES and ~RJ can be shown to subtend 
equal angles by drawing any two parallel lines SD and JF:


~SF = ~JD


~ES + ~SF  = ~RJ + ~JD 


~EF = ~RD


ED || RF


Figure 2:
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Since equal angles along a circle therefore 
subtend equal arcs, any angle along any circle 
can be defined in terms of its subtended arc 
and the circle's diameter. For example: 


∠RFJ = ~RJ 
                EU 
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Triangles need only two equal angles to be the same 
shape, (or ≅).


Since equal arcs subtend equal angles along a circle:


ΔEJD ≅ ΔDFI 
FD = JE  
 FI     JD 

Figure 3:

11



which describes an important property of any 
cyclic quadrilateral SEDF.

~SJ = ~FD


ΔEJS ≅ ΔEDI 

EI = ES

ED   EJ


FD.EI = JE.ES = SE

FI.ED    JD.EJ    SF


IE = SE.DE 
IF     SF.DF

Figure 4:
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Figure 5:

LD || FE


DE = LF 

DF    LE


IE = SE.LF 

IF    SF.LE


       FE = SE.LF + SF.LE

FI            SF.LE


                        


13



Figure 6:
LD || FE


~EL = ~FD 


ΔLSE ≅ ΔFSI 


LS = FS.LE

        FI

FE.LS = SE.LF + SF.LE 

which describes an important property of any 
cyclic quadrilateral SELF.
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Figure 7:

∠KNU = ∠MDH


  

   ~UK = ~MH = ~MH

    UN      MD       UE


=  2(~UM)  =  2(~UM) 

         UE        2(UN)


∠KNU = 2∠MEU  
~UK = ~UM
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Figure 8:
Let K ⇒ N and D ⇒ H:
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Section 2 

Refraction Along a Line
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Figure 9:
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Figure 10:

Create right triangle NBK.


When A lies at B:


NK = NK = (OB) = WB

NA    NC    (OA)    WK


KW = YN
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Figure 11:

When A lies at K:

NK = NK = (OB) = WB

NA    NC    (OA)    WK


KW = YN = infinity
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Figure12:

when:


SC = BW ll SC


KW = NS


NS = NS  

NC    NA


NC = NA  

NB    NB
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Figure 13:

if:    NS = NC  

       NC    NB


then:  NK = NA  

          NC    NB


          NA ll SC

          KW (= NS) = YN
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It is obvious that as A approaches K from B, the 
relative rate that YN and KW approach infinity 
does not plateau, peak, or dip. Since we have 
shown that YN = KW when A lies at a point along 
BK other than B as well as at B, we have shown 
that YN = KW for all points A along BK.
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Figure 14:

 OB = NK = N’K’

OA     NA    N’A


KW = YN


K’W’ = YN’


KB = K’B

 YN     YN’
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Figure 15:

As the equal 
lengths of EN and 
E’N’ rotate about 
Y until they 
overlap, they 
approach their 
minimum which 
also occurs when 
N’K’X’ and NKX 
overlap.
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Let X = Z when 
both NKX and 
N’K’X overlap, 
which occurs when 
EYN is the shortest 
line segment 
through Y 
connecting line QB 
to its perpendicular 
at Q. This occurs 
when: because:

Figure 16:



Figure 17:
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Figure 18:

CQ' || ES


CQ' > EG > EN 


holds true as 


Q' ⇒ N
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Figure 19:
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Figure 20:
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Figure 21:
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Before considering refraction along a line, 
picture yourself sitting on the beach watching 
waves roll in. Notice that even when 
wavefronts far out in the ocean are traveling 
perpendicular to the beach, they become 
closer to parallel with the beach as they 
crash. On beaches that are long and sloped, 
or have many sandbars, these wavefronts all 
crash parallel to the beach, regardless of 
their orientation in the open ocean.
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Now picture yourself in a car applying brakes 
while driving. If the brakes on the front right 
wheel grip harder, the car will turn to the 
right. This is intuitive. For the same reason, 
when a wavefront hits a sandbar at an angle, 
one side of the wavefront will slow before the 
other, and this will tend to turn the wavefront 
parallel to the beach. This essentially 
represents refraction along a line.
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Figure 22:
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Figure 23:

and Z is the clear image of object A refracted at N 
along BN.

given ΔBAO:

use ΔBKW or ΔQBY to find ΔBNY.

use ΔBNY to find ΔBKW or ΔQBY.
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Section 3 

Refraction Along a Circle
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Figure 24:
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Figure 25:
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Figure 26:
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Figure 27:
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Figure 28:
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Figure 29:

the real image (Z) can be 
projected on a screen
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Figure 30:

HD = QN’


RJ = FN’


as N’⇒ N:

X⇒ Z, and ~DJ⇒ DJ 

so that:
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Figure 31:

44



45



Figure 32:
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Off-axis rays from any 
on-axis object A, (real 
or virtual), can not 
form a virtual on-axis 
image Z because NW 
must be less than CP 
for Z to be virtual; but 
NW must also be 
greater than NT.

Figure 33:
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Off-axis rays from any 
real on-axis object A 
can not form a real on-
axis image Z because 
NW must be greater 
than (or equal to) CP 
for Z to be real; but 
NW must also be 
greater than NT.

Figure 34:
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Off-axis rays from a virtual on-axis object A can form a real 
on-axis image Z because NW must be greater than or equal 
to CP for Z to be real; and NW must also be greater than NT. 
When WT lies along the axis, so does Z. This occurs when:

Figure 35:
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When off-axis rays from a 
virtual on-axis object A 
form a real on-axis image 
Z, this is the on-axis real 
image of the on-axis virtual 
object A at all points N 
because:

Figure 36:

52



This can also be demonstrated 
by constructing:


SC/CN  =  CN/CY


Figure 37:
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Section 4 

Axial Refraction at a Circle
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Figure 38:

57



AL  ll  ZB

AZ = BL


~AZ = ~BL


HZ  ll  CL

ZC = LJ


~ZC = ~LJ


~AZ + ~ZC = ~AZC

~BL + ~LJ = ~BLJ


~AZC = ~BLJ

AJ  ll  CB

Figure 39:
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HZ  ll  CL


ZB = HB

ZD    HC

IB = HZ

IA    HB

Figure 40:
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Figure 41:

60



These equalities are used with the following possible sums 
resulting from the circle with infinite radius, to produce the 
conjugate foci equations:


HZ= HB + BZ    or

HB = HZ + BZ   or

BZ = HZ + HB
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Section 5 

Afocal Axial  
Angular Magnification
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Before considering afocal axial angular 
magnification, imagine two cars driving down 
the same street. When one car passes a sign 
post, it speeds up until it reaches the next 
sign post, then slows back down to its 
original speed, which is the same speed of 
the other car. Not only will the car that sped 
up be further down the road, it will also have 
had a greater average speed during the trip. 
This effect depends on two factors. The first 
is the degree to which the car speeds up 
between the sign posts, and the second is the 
distance between those sign posts.
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This metaphor can be used to illustrate afocal 
axial angular magnification, which simply 
depends on two factors. The first is the degree 
to which light rays change between two lenses 
or refracting surfaces. The second is the 
separation of those two lenses or refracting 
surfaces. This is why a collapsible telescope 
no longer magnifies a distant object when it is 
“collapsed,” and its lenses are no longer 
separated.
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Figure 42:

65



In figure 41, given distance refraction at ~JDE 
followed by refraction into distance at ~QGS along 
axis DGF:


as angle JFD = angle SFG, and both approach zero, 
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Figure 43:
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In figure 42, given distance refraction at ~JDE 
followed by refraction into distance at ~QGS along 
axis FDG:


as angle JFD = angle SFG, and both approach zero, 
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Section 6 

Clinical Determination of 
Axial Retinal Image Size 

Magnification 
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From figure 13, recall the 
“continued proportion” 


NS = NC

NC    NB


and notice that: 


NK =   KN + KG

NB               GP        


which equals:


NK + NB

NK

Figure 44:

ΔNBK = ΔGKP
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We have just shown that:

Since we have shown that neither NK or NB 
can measure the other length, we have shown 
that there is no length relative to itself, (“unit 
length”), that will measure all finite lengths.
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This is relevant in any discussion of 
magnification. We can either consider such 
non-measurable distances to be irrational 
numbers, which are continuing fractions, or 
we can consider “number theory” itself to 
be irrational, along with the presumption 
that anything, even a unit measurement, can 
be real defined by itself. 
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Axial retinal image size magnification is not a 
number, but rather a ratio. It therefore requires 
a standard retinal image size for comparison. 
It is fair to call any such magnification using a 
standard, which is by definition arbitrary, 
meaningless in and of itself. However, it is 
simply a tool to use for comparing 
magnifications. Such comparisons are 
meaningful and not arbitrary, because 
arbitrary standards factor out when 
comparing ratios. 
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Figure 45:

The top diagram 
references the 
standard eye. The 
bottom diagram 
references any 
eye used for 
comparison, with 
the retinal image 
size designated 
as HZ.
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In order to find the magnification M, (in this case that 
of retinal image size magnification), we need to know 
both the standard BHo, as well as BH for the eye in 
question. When a distant object is focused at Z, and 
a distance refractive error exists, Z lies at E rather 
than at H.

Figure 46:
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Measure BL to find:

78



79



is meaningless when considering the focused axial image 
size magnification BH/BH๐ when the standard image is real.
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Figure 47:
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Figure 48:
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When the retinal image size magnification of two 
real eyes are compared, retinal image size 
magnification loses its arbitrary nature resulting 
from its presumed standard. However, that does 
not address the arbitrary assumption in this 
calculation that magnification differences 
between two eyes result solely from their front 
surfaces. This calculation is only as correct as 
that assumption. 
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Section 7 

Axial Magnification of 
Distance Correction 
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Figure 49:

Standard 
emmetropic eye:

Non-standard 
emmetropic eye:
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Figure 50:

Additional refraction 
at G (at B) creates 
distance refractive 
error with combined 
curvature of radius 
BL.
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Figure 51:

The distance 
correction must 
focus infinity (A) 
at F so that:


JF ll BE
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Figure 52:
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Figure 53:
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Note that when all the refractive error is 
due to the retina H lying at a position other 
than the standard, in other words, all the 
error is “axial” in nature, which occurs 

The magnification equals one when the 
distance correction at D lies at the 
standard eye’s front focal point.
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Figure 54:
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Section 8 

Axial Magnification of Near 
Correction 
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Figure 55:

There is no afocal 
angular 
magnification when 
object A is at the 
front focal point of 
a myopic eye,

or at distance 
with an 
emmetropic eye.
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Figure 56:

However, a distance 
myopic correction at D 
creates afocal angular 
magnification:


         FD   <  1

FG   

and this is relative to both the myopic eye with 
object A at the myopic eye's front focal point F, 
as well as the emetropic eye with object A at 
distance.
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Figure 57: Removing the 
myopic distance 
correction at D with a 
converging lens at D 
removes this afocal 
angular magnification 
with the factor:

        FG  >  1

FD


and this magnification of near correction is 
relative to the distance corrected myope.
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(Figure 55):

or an emmetrope.

It is not relative to 
either the myope,
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Figure 58:

If additional converging power is added to the 
converging lens so that the near focal point is in focus 
for an emetropic eye, rather than the myopic eye, the 
afocal angular magnification removed with the factor:

        FG  >  1

FD

remains the same, and the reference eye is 
emetropic.
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Figure 59:

When the converging lens at D is split into two 
converging lenses:
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Figure 60:

With the same combined focus F:
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The axial magnification 
of near correction can 
be specified as that 
produced 

as if 

all convergence occurs 
at a single unknown 
axial point De 

Figure 61:

and equals:


FG  =  FB

FDe     FDe
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De can be located 
using triangles:


D₂g   =   Deq

D₂F        DeF


D₂g   =   D₁j

  D₂F₁       D₁F₁


Figure 62:
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   D₂F  Deq     =    D₂F₁  D₁j 

              DeF                    D₁F₁


      Deq   =  D₂F₁    D₁j  

         DeF       D₂F      D₁F₁


           1       =    D₂F₁      1   

             DeF          D₂F      D₁F₁


           FB       =      D₂F₁      FB   

              FDe             D₂F        D₁F₁


Figure 63:
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Figure 64:

When an object at a standard distance Fs is 
moved to F: 
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Figure 65:

The near object angular subtense magnification 
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which equals the axial near object angular 
subtense magnification. 

θ/α  ⇒         wFs  =  wFs  =  BFs

xFs        yF        BF


as  yF  =  xFs  ⇒   0

θ/α  =         ~gFs/BFs

~eFs/BFs        
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Multiplying the axial near subtense 
magnification by the axial magnification of near 
correction produces:

BFs  =  D₂F₁  BFs

  FDe      D₂F   D₁F₁
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Since the converging lens at D2 creates a 
virtual image at F1 of an object at F, so that 
the enlargement of an object at F created by 
D2 equals D2F1/D2F; when the diagram 
represents a stand magnifier with lens D2 
and stand height D2F, and the reading 
spectacle add is D1, (or the ocular 
accommodation is D1 at B), the 
magnification produced by the stand 
magnifier is its (constant) enlargement 
factor, multiplied by that produced by D1 
alone.
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The ratio describing near object axial angular 
subtense magnification:


BFs

BF


when combined with the ratio describing near 
magnification due to a single converging lens 
producing parallel light for an emmetropic eye:


FB

FD
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produces a ratio product which factors out 
the object’s actual distance to the eye, 
confirming that when a converging lens is 
used with its front focal point at the near 
object, (and therefore parallel light leaves the 
converging lens from the object), the image 
size is the same regardless of the object-to-
eye distance.
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