Geometrical Optics

2021

Gregg Baldwin OD

Dedicated to my Geometrical Optics professor, William Brown, OD, PhD, who always taught the geometry first.

Reference:
Isaac Barrows Optical Lectures, 1667
Translated by H.C. Fay
Edited by A.G. Bennett
Publisher:
The Worshipful Company of Spectacle Makers
London, England; 1987
ISBN \# 0-951-2217-0-1

1). images seen through water

If an underwater object D is at a perpendicular distance BD from line BN along the water's surface, the image of the object seen directly above from air, (along BD), is at Z; and $B D / B Z=4 / 3$.

Isaac Barrow showed that the image of object D, (when seen from Q obliquely along image ray $M N Q)$, lies above the object, but also towards the observer relative to DB.

To do this, he first drew a reference right triangle created by drawing $B E=B Z$ as shown, which created the following constant ratios for air/water refraction:
$B D / B Z=B D / B E=4 / 3$
$\mathrm{DB} / \mathrm{DE}=4 / \sqrt{ }(16-9)=1.5$
$E D / E B=\sqrt{ }(16-9) / 3=0.87$

As the first step in finding an oblique image ray XNQ , along which the image of object D is seen at a designated point X, Isaac Barrow described a method of finding all possible oblique image rays through the designated point X, without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with the perpendicular DB.

He showed that, given a designated desired clear image location X, if we draw PW as shown, where:
$\mathrm{PW} / \mathrm{PX}=\mathrm{DB} / \mathrm{DE}=1.5$

all possible image rays through X, (MXNQ) are found using:
$\mathrm{DB} / \mathrm{YN}=\mathrm{ED} / E B=0.87$
by drawing all possible reference lines of length $\mathrm{YN}=\mathrm{DB} / 0.87$ through W , in order to locate the required positions of N .
 pos

Isaac Barrow showed that YN can be drawn as the shortest segment through W bounded by the right angle $\angle(\mathrm{Y}) \mathrm{B}(\mathrm{N})$ when right triangles $\triangle Y B N, \triangle N W T$, and $\triangle T W Y$ are all drawn as similar.

He showed that there can be a maximum of two image rays through a designated point X , since only two reference line segments within the right angle $\angle(\mathrm{Y}) \mathrm{B}(\mathrm{N})$, and equaling his calculated constant YN , can fit through point W. This is true since $Y_{2} N_{2}=Y_{1} N_{1}$ means that the right triangle $\Delta \mathrm{Y}_{2} \mathrm{BN}_{2}$ must equal the right triangle $\Delta \mathrm{N}_{1} \mathrm{BY}_{1}$.

The length of YN through a designated W and bounded by the right angle $\angle(\mathrm{Y}) \mathrm{B}(\mathrm{N})$ must be varied as it is rotated about W to find the position of its minimum length. Therefore, the position of N and Y must change to find N that corresponds to an image ray QNXM with its clear image at the designated (unchanging) point X. Furthermore, since:
$\mathrm{PW} / \mathrm{PX}=\mathrm{DB} / \mathrm{DE}$ is constant, $E D / E B=D B / Y N$ is also constant, so DB varies with the length YN as a constant proportion.

With an object underwater, Isaac Barrow's method does not allow for finding the location of the image ray on which a designated clear image is seen, while keeping both the image location and the object position constant. It does, however, allow for a geometric understanding of the conditions required to provide a clear image. As will be now demonstrated, with an object in air, Isaac Barrow's method actually does allow for finding the location of the image ray on which a designated clear image is seen, while keeping both the image location and the object position constant.

If an object D in air is at a perpendicular distance $B D$ from line BN along the water's surface, the image of the object along that perpendicular when seen from underwater is at Z, and $B Z / B D=4 / 3$.
A reference right triangle created by drawing $\mathrm{BE}=\mathrm{BD}$ as shown, creates the following additional constant ratios:
$B Z / B E=4 / 3$
$Z B / Z E=4 / \sqrt{ }(16-9)=1.5$
$E Z / E B=\sqrt{ }(16-9) / 3=0.87$

As the first step in finding an oblique image ray XMNQ , along which the image of object D is seen at a designated point X , Isaac Barrow described a method of finding all possible oblique image rays through point X, without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with the perpendicular BD.

If we draw $B Y$ as shown, where:
$B Y / B D=Z B / Z E=1.5$

He showed that there can be a maximum of two image rays through any designated point X , since only two reference line segments within the right angle $\angle(W) P(N)$, and equaling his calculated constant WN, can fit through point Y .

Isaac Barrow showed that all possible image rays through X, (XMNQ) are found using:

$X P / W N=M B / Y N=E Z / E B=0.87$
by drawing all possible reference lines of length $\mathrm{WN}=\mathrm{XP} / 0.87$ through Y .

The point X that is the clear image of object D seen along a to-bedetermined XMNQ is found using the minimum reference line segment length $(W) Y(N)$ through Y, that is bounded by the right angle $\angle(W) P(N)$.

Isaac Barrow showed that WN can be drawn as the shortest segment through Y bounded by the right angle $\angle(\mathrm{W}) \mathrm{P}(\mathrm{N})$ when right triangles $\triangle \mathrm{WPN}, \triangle \mathrm{NYT}$, and $\triangle \mathrm{WYT}$ are all drawn as similar.

As any two equal segments $\mathrm{W}_{1} \mathrm{YN}_{1}$ and $\mathrm{W}_{2} \mathrm{YN}_{2}$ are rotated about Y in order to approach their single common minimum length, N_{2} approaches N_{1}, and ΔN approaches zero. Both the positions of N_{2} and N_{1} must change during this process of finding the point N associated with a designated clear image X.

Since Y (not W) is the pivot point as segments $\mathrm{W}_{1} \mathrm{Y} N_{1}$ and $\mathrm{W}_{2} \mathrm{Y} N_{2}$ rotate, BY remains unchanged. Therefore, $B D$ also remains unchanged because $B Y / B D=B Z / B E$. Therefore, unlike when the object is in water, when the object is in air, this method can find an image ray XMNQ that will produce a designated clear X, while holding the object position constant.

2). prerequisite geometry

On a circle with diameter EU and center N :

Since conversely, equal angles along a circle subtend equal arcs, any angle along any circle can be defined in terms of its subtended arc and the circle's diameter.

For example: $\angle \mathrm{RFJ}=\sim \mathrm{RJ} / E \mathrm{EU}$

Two equal arcs \sim SE and $\sim J R$ can be shown to subtend equal angles by drawing any two parallel lines SD and JF. Since parallel lines intercept equal arcs across a circle,
$\sim S F=\sim J D$
$\sim S E+\sim S F=\sim J R+\sim J D$

$\sim E F=\sim R D$
ED || RF, and therefore:
$\angle S D E=\angle J F R$

Triangles need only two equal angles to be the same shape, (or \cong).
Since equal arcs subtend equal angles along a circle:
$\Delta \mathrm{EJD} \cong \Delta \mathrm{DFI}$
FD/FI $=\mathrm{JE} / \mathrm{JD}$

$[(F D)(E I)] /[(F I)(E D)]$
$=[(\mathrm{JE})(\mathrm{ES})] /[(\mathrm{JD})(\mathrm{EJ})]$
= SE/SF
IE/IF = [(SE)(DE)]/[(SF)(DF)]

which describes an

 important property of any cyclic quadrilateral SEDF

LD || FE
$\sim E L=\sim F D$
$\Delta \mathrm{LSE} \cong \Delta \mathrm{FSI}$
$\mathrm{LS}=\{(\mathrm{FS})(\mathrm{LE})\} / \mathrm{FI}$

$(F E)(L S)=(S E)(L F)+(S F)(L E)$
which describes an important property of any cyclic quadrilateral SELF

$$
\begin{aligned}
& \angle \mathrm{KNU}=\angle \mathrm{MDH} \\
& \angle \mathrm{MDH}=\sim \mathrm{MH} / \mathrm{MD} \\
& =\sim \mathrm{MH} / \mathrm{UE} \\
& =2(\sim \mathrm{UM}) / \mathrm{UE} \\
& =2 \angle \mathrm{MEU} \\
& \\
& \angle \mathrm{KNU}=\sim \mathrm{UK} / \mathrm{UN} \\
& =2(\sim \mathrm{UM}) / 2(\mathrm{UN}) \\
& \sim \mathrm{UK}=\sim \mathrm{UM}
\end{aligned}
$$

Let $\mathrm{K} \Rightarrow \mathrm{N}$ and $\mathrm{D} \Rightarrow \mathrm{H}$:
$\sim U K / U N=\sim M H / M D$
$=\sim \mathrm{MH} / \mathrm{UE}=\angle \mathrm{MEH}$
$\sim \mathrm{UK} / \mathrm{UN}=\angle \mathrm{MNU}$

2($\sim \mathrm{UK}) / \mathrm{UN}=\angle \mathrm{MNH}=\pi$

Keeping only:
$N A=N C$, and
$\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \triangle \mathrm{KWB}:$

As $\mathbf{N} \Rightarrow \mathrm{B}, \mathbf{W K} \Rightarrow \mathrm{YN}$
because:
WK/OA \Rightarrow NK/NA $=$ NK/NC
$=O B / O A=W B / W K$

so that:
$\mathrm{WK} \Rightarrow \mathrm{OB} \Rightarrow \mathrm{YN}$

Keeping only:
NA = NC, and
$\Delta C N K \cong \triangle A O B \cong \triangle K W B:$
As $A \Rightarrow K, W K \Rightarrow Y N$

Keeping only:
$N A=N C$, and
$\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \triangle \mathrm{KWB}:$
As $A \Rightarrow B, W K \Rightarrow Y N$

We can therefore
assume that whenever
A lies on BK, given right triangle $\triangle K B N$, if $N A=N C$, and
$\triangle C N K \cong \triangle A O B$
$\cong \triangle \mathrm{KWB}$
as shown, then:

WK = YN
$(\mathrm{CK} / \mathrm{CN})^{2}=(\mathrm{AB} / \mathrm{AO})^{2}$
$=(\mathrm{KB} / \mathrm{KW})^{2}$
$=\left(\mathrm{CK}^{2}+\mathrm{AB}^{2}\right) /\left(\mathrm{CN}^{2}+\mathrm{AO}^{2}\right)$
Since $\mathrm{KB}^{2}=\mathrm{CK}^{2}+\mathrm{AB}^{2}$
$\mathrm{WK}^{2}=\mathrm{CN}^{2}+\mathrm{AO}^{2}$
$=\mathrm{AN}^{2}+\mathrm{AO}^{2}$
$=\mathrm{BA}^{2}+\mathrm{BN}^{2}+\mathrm{BO}^{2}-\mathrm{BA}^{2}$
$=\mathrm{YN}^{2}$

$\mathbf{W K}=\mathbf{Y N}$
$\mathrm{OB} / \mathrm{OA}=\mathrm{NK} / \mathrm{NA}$ $=N^{\prime} K^{\prime} / N^{\prime}$ 'A
$\mathrm{KW}=\mathrm{YN}$
$K^{\prime} W^{\prime}=Y N^{\prime}$
$K B / Y N=K^{\prime} B / Y N^{\prime}$

NE || GL
TY || EL
HI || NM
$\mathrm{HI}=\mathrm{NM}$
$\mathrm{NM}>\mathrm{NL}$
NL is the hypotenuse of right triangle NEL

NL > NE
$\mathrm{HI}>\mathrm{NE}$

QX/EN $=K B / Y N$
$=K^{\prime} B / Y N^{\prime}=Q X / E^{\prime} N^{\prime}$
$E N=E^{\prime} N^{\prime}$

Only one N'K'X exists for NKX since only one E'N' exists equal to EN. When EN is the smallest segment through Y included in the right angle EQN, E^{\prime} lies at E, and N^{\prime} lies at N.

42

NE || GL
TY || NL
HI || EM
$\mathrm{HI}=\mathrm{EM}$
$\mathrm{EM}>\mathrm{EL}$

EL is the hypotenuse of right triangle ENL
EL > EN
$\mathrm{HI}>\mathrm{EN}$
$\mathrm{X}=\mathrm{Z}$ when EN is the shortest segment through Y included in right angle EQN

In order to find Z given $\triangle \mathrm{YBQ}$, we must find EN so that: right triangle $\Delta T Y E=\triangle Q F N$ by drawing a circle concentric with $\odot \mathrm{Y}(\mathrm{F}) \mathrm{BQ}$
 around its center D containing arc \sim EN so that YF lies on chord EN.

In order to find Z given $\triangle Y B N$ and NK, we must find E using:
$\triangle \mathrm{YBN}$
$\cong \triangle \mathrm{NYT}$
$\cong \triangle \mathrm{NTE}$

Not only does:
DY = DF, but also:
$E D=N D$ and therefore
$\Delta E D Y=\Delta N D F$
so $\mathrm{EY}=\mathrm{NF}$
Since \triangle QFN is a right triangle, so is $\triangle T Y E$.

Once we have found
EN, we must also find NK in order to find Z.

3). refraction along a line

If $\boldsymbol{R}=\mathrm{OB} / \mathrm{OA}$,
and $\mathrm{KW}=\mathrm{YN}$:
$\boldsymbol{R}=\mathrm{NK} / \mathrm{NA}$
and Z is the clear image of object A refracted at N along BN
$\Delta N_{0} N K \cong \Delta K N A$
because:
$\sim N S=\sim N K$
Wavefront $\mathrm{G}_{0} \mathrm{~N}_{0}$ refracts into wavefront GN along $\mathrm{G}_{\mathrm{o}} \mathrm{N}$, because it travels $\mathrm{G}_{\mathrm{o}} \mathrm{G}$ in the same time it travels N, N.
$\boldsymbol{R}=\mathrm{NN}_{\mathrm{o}} / \mathrm{GG}$
$=\mathrm{NN}$ o/NK $=\mathrm{NK} / \mathrm{NA}$

given $\triangle B A O$:
use \triangle BKW or \triangle QBY to find $\triangle B N Y$ use $\triangle \mathrm{BNY}$ to find $\triangle \mathrm{BKW}$ or $\triangle \mathrm{QBY}$

4). refraction along a circle

```
\triangleANN'\cong }\triangleAQ
AG/AN' = QG/NN'
\((A G+A N ') / 2 A N '\)
```


$=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime}$
Real object A

$\triangle \mathrm{KNA} \cong \triangle \mathrm{OCP}$
$\boldsymbol{R}=\mathrm{NK} / \mathrm{NA}$
= N'K'/N'A
= CO/CP

$\triangle A N N ' \cong \triangle A Q G$ AG/AN' $=$ QG/NN'
(AG + AN')/2AN' $=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime}$

Virtual object A

can not be projected on a screen due to refraction at BN .
$\triangle X^{\prime} N^{\prime} \cong \triangle \mathrm{XFE}$
XE/XN' = EF/NN'
(XE + XN')/2XN'
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$

Real image at $(X=Z)$
 can be projected on a screen.

```
\triangleXNN'\cong }\\mathrm{ XFE
XE/XN' = EF/NN'
```

(XE + XN')/2XN'
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$

Virtual image at $(X=Z)$
 can not be projected on a screen.

Also, when HD = QN' and $R J=F N^{\prime}$
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$=2(\sim N D) / 2(\sim N J)=\sim N D / \sim N J$

As $\mathrm{N}^{\prime} \Rightarrow \mathrm{N}, \mathrm{X} \Rightarrow \mathrm{Z}$, and:
\sim DJ \Rightarrow line segment DJ, so:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$\Rightarrow \mathrm{ND} / \mathrm{NJ}$


```
DS/JI = CO/CP
JI/JN = NP/NC
DN/DS = NC/NO
ND/NJ = (NP/NO)(CO/CP)
As N' }=>\textrm{N},\textrm{X}=>\textrm{Z}\mathrm{ , and:
(~QG + ~NN')/(~EF + ~NN')
=> (NP/NO)(CO/CP)
```

and therefore:
(AO/AN)(ZN/ZP) \Rightarrow (NP/NO)(CO/CP)

The off-axis rays from any on-axis object A, (real or virtual), can not form a virtual on-axis image at Z because NW must be less than CP for Z to be virtual;
 but NW must also be greater than NT.

Thus $\mathbf{R}=\mathrm{CO} / \mathrm{CP}$, and Z , (along both NP and CW), is the clear image of A refracted along $\sim B N$, when:

NT||CO, so:
$\mathrm{AO} / \mathrm{AN}=\mathrm{CO} / \mathrm{NT}$ and:
NW||CP, so:
ZN/ZP = NW/CP
and:
$N W / N T=N P / N O$

$(\Delta \mathrm{WNT} \cong \Delta \mathrm{PNO})$

The off-axis rays from any real onaxis object A can not form a real on-axis image at Z because NW must be greater than (or equal to) CP for Z to be
 real; but NW must also be greater than NT.

The off-axis rays from any real on-axis object A can not form a real on-axis image at Z because NW must be greater than (or equal to, as
 shown here) CP for Z to be real; but NW must also be greater than NT.

Since:

$\angle \mathrm{NWT}=\angle \mathrm{NPO}=\angle \mathrm{NCO}$ and NW\|CP

WT lies along the axis when:
$\Delta \mathrm{NCO} \cong \Delta \mathrm{ZCP}$

The off-axis rays from a virtual on-axis object A can form a real on-axis image at Z, if NW is greater than CP, and WT lies along the axis.

66

When off-axis rays from a virtual on-axis object A form a real on-axis image Z, this occurs at all points N because:

$\Delta A C N \cong \triangle N C Z$ for all N
5). refraction through a circle's center

Refraction through a circle's center occurs when N lies at B , so that an object's ray from A to N lies along $A B C$, and an image ray lies along BCZ. The locations of the object A and image Z along the optic axis $B C$ are described by the equation:
$\boldsymbol{R}=\mathrm{CO} / \mathrm{CP}=(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC})$

Keeping:
$\boldsymbol{R}=(\mathrm{CO} / \mathrm{CP})=$
(NO/NP)(AO/AN)(ZN/ZP)
constant as:
$N \Rightarrow B$:
$(\mathrm{BC} / \mathrm{BC})(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC}) \Rightarrow \boldsymbol{R}$

If we draw A and Z along the optic axis BC as if it were a circle, and draw CDL so that $A L$ || ZB: $\triangle A C B \cong \triangle Z C D$, and: $(A C / A B)(Z B / Z C)=$ (ZC/ZD)(ZB/ZC) = (ZB/ZD)
so as the reference circle's radius $\Rightarrow \infty$
(ZB/ZD) $\Rightarrow \boldsymbol{R}$

AL II ZB
$A Z=B L$
$\sim A Z=\sim B L$

HZ II CL
ZC = LJ
$\sim \mathrm{ZC}=\sim \mathrm{LJ}$
$\sim A Z+\sim Z C=\sim A Z C$
$\sim B L+\sim L J=\sim B L J$
\sim AZC $=\sim$ BLJ
AJ II CB

73
$\Delta H C Z \cong \Delta H J B \cong \Delta B A Z$
$(H C / H Z)=(B A / B Z)$
$[1 /(H Z)(B A)]=[1 /(H C)(B Z)]$

75

HZ \| CL
$Z B / Z D=H B / H C$
$\Delta H B Z \cong \Delta H J C$
when $\triangle H J C=\Delta I A B$:

$\mathrm{HC}=\mathrm{IB}$, and:
$\mathrm{IB} / \mathrm{IA}=\mathrm{HZ} / \mathrm{HB}$
This results in
Newton's Equation
as the reference circle's radius $\Rightarrow \infty$:
$(\mathrm{Al})(\mathrm{ZH})=(\mathrm{BI})(\mathrm{BH})$
H

as the reference circle's radius $\Rightarrow \infty$:
$[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})] \Rightarrow \boldsymbol{R} /(\mathrm{HB})(\mathrm{BZ})$
and the resulting possible sums occur:
$H Z=H B+B Z$
$H B=H Z+B Z$
$B Z=H Z+H B$
which, when multiplied by the above three factors, form the conjugate foci equations.

The conjugate foci equations allow for the effect of axial refraction at a circle to be expressed as the term:

$$
(1 / \mathrm{HC})=(\boldsymbol{R} / \mathrm{HB})
$$

which is then additive with object vergence, defined as (1/BA); or image vergence, defined as (R/BZ).

Afocal Angular Magnification

When distance refraction at \sim JDE is followed by refraction into distance at ~QGS along axis DGF as shown; as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

Afocal Angular Minification

Or when distance refraction at $\sim J D E$ is followed by refraction into distance at ~QGS along axis FDG, as shown; as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

$\theta / a \Rightarrow(\sim L D / G D) /(\sim Y G / G D)$ as $P \Rightarrow F$
$\theta / a \Rightarrow(F D / F G)$ as $P \Rightarrow F$
so that afocal axial angular magnification/minification equals:

FD/FG

The top diagram illustrates a standard single-surfaced eye with a distant object A , and resulting retinal image size $\mathrm{H}_{\mathrm{o}} \mathrm{Z}_{\mathrm{o}}$.

The bottom diagram illustrates any single-surfaced eye with a distant object A, and resulting retinal image size HZ.

As $N \Rightarrow B$, the retinal image size magnification, $\mathrm{ZH} / \mathrm{Z}_{0} \mathrm{H}_{0}$, (relative to an arbitrary standard which factors out with subsequent comparisons), then approaches its axial value:
$Z Q / Z_{0} Q_{o}=Z C / Z_{0} C_{o}=H C / H_{0} C_{\circ}$
$=(\mathrm{BH} / \boldsymbol{R}) /\left(\mathrm{BH}_{0} / \boldsymbol{R}\right)=\mathrm{BH} / \mathrm{BH}$ 。

Once again
representing the optic axis $B C Z$ as a circle of infinite radius, the distant object A is focused by the curve of radius $B C$ towards the axial object Z, (which lies at the retina H when there is no distance refractive error).

A distance correction must focus the distant object A towards the focal point F of the refractive error G, so that JF || BE, in order to move Z back to H .

89

Since the distance correction at D moves Z to H, rays leaving G after this correction must be afocal, resulting in afocal axial angular magnification equaling:

FD/FG (= FD/FB)

The distance correction at D:

F

The (total) axial magnification of distance correction equals:
$\mathrm{M}=\left(\mathrm{BH} / \mathrm{BH}_{0}\right)(\mathrm{FD} / \mathrm{FB})$

When the front surface of a spectacle lens that corrects distance refractive error is not flat, it is convex; and adds an additional "shape" factor, ($\mathrm{fq} / \mathrm{ft}$), to the afocal axial magnification of distance correction. (Point "t" lies at D, and FD/FB remains the "power" factor of the afocal axial magnification of distance correction).

9). axial magnification of near correction

$\Delta \mathrm{EBH} \cong \Delta \mathrm{EJL}$

If E is at H_{o}, the distance refractive error is completely due to an axial length that is not standard.

If $\Delta \mathrm{EJL} \cong \Delta \mathrm{l}_{\circ} \mathrm{FB}$, then:
$\mathrm{M}=\left(\mathrm{FB} / \mathrm{Fl}_{\mathrm{o}}\right)(\mathrm{FD} / \mathrm{FB})=\mathrm{FD} / \mathrm{Fl}_{\circ}$
There is then no (total) axial magnification of distance correction if the correction D lies at I_{0}, the front focal point of the standard eye.

There is no afocal axial angular magnification FD/FB when object A is at distance with an emetropic eye.
(The refractive error at
 G, (at B), is zero; and the focal point F of that refractive error lies at infinity).

There is also no afocal axial angular magnification when object A is at the front focal point of an uncorrected myopic eye. (The system is not afocal, and involves only one
 refracting element).

As discussed, a distance myopic correction at D creates afocal axial angular minification:

FD/FG < 1
and this is relative to either the myopic eye with object A at its front focal point F, or the emetropic eye with object A at distance.

If additional converging power is added to the converging lens so that the near focal point is in focus for an emetropic eye, which we then consider to be the reference eye, the magnification of near correction is still that
 afocal axial angular magnification with the factor:

Removing the myopic distance correction at D with a converging lens at D removes this the factor:

FG/FD > 1
and this magnification of near correction is relative to the distance corrected myope.

10). object angular subtense magnification

The object angular subtense magnification equals:

$\theta / \mathrm{a}=(\sim \mathrm{GFs} / \mathrm{BFs}) /(\sim \mathrm{EFs} / \mathrm{BFs})$

When an object at a standard distance
Fs is moved to F :

as $\mathrm{XFs} \Rightarrow 0$
the object angular subtense magnification approaches its axial value:
$\theta / \mathrm{a} \Rightarrow \mathrm{WFs} / \mathrm{XFs}=\mathrm{WFs} / \mathrm{YF}=\mathrm{BFs} / \mathrm{BF}$
which equals the axial
object angular subtense magnification.

The ratio describing axial object angular subtense magnification:

BFs/BF
when multiplied by the ratio describing near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD
produces a ratio which factors out the object's actual distance to the eye, confirming that when a converging lens is used with its front focal point at the object, so parallel light leaves the converging lens from the object, the image size is the same regardless of the object-to-eye distance.

106

When the converging lens at D is split into two converging lenses:

∞

with the same combined focus F :

the ratio describing axial near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD

must be expressed as if all convergence occurred at a single unknown axial point De:

FB/FDe

De can be located using triangles.
$\mathrm{D}_{2} \mathrm{G} / \mathrm{D}_{2} \mathrm{~F}=\mathrm{DeQ} / \mathrm{DeF}$
$D_{2} G / D_{2} F_{1}=D_{1} J / D_{1} F_{1}$

$\mathrm{D}_{2} \mathrm{~F}(\mathrm{DeQ} / \mathrm{DeF})=\mathrm{D}_{2} \mathrm{~F}_{1}\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
$\mathrm{DeQ} / \mathrm{DeF}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
$1 /$ DeF $=\left(D_{2} F_{1} / D_{2} F\right)\left(1 / D_{1} F_{1}\right)$
$\mathrm{FB} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{FB} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

Multiplying the axial object subtense magnification by the axial magnification of near correction (relative to the same eye without refractive error) produces:
$\mathrm{BFs} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{BFs} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

The converging lens D_{2} creates a virtual image F_{1} of an object at F . When considering a stand magnifier with lens D_{2}, constant stand height $D_{2} F$, and reading spectacle add or ocular accommodation D_{1}, the stand magnifier's (constant) enlargement of the object at F equals:

$$
E=D_{2} F_{1} / D_{2} F
$$

The stand magnifier's axial magnification is its (constant) enlargement factor E, multiplied by what would be produced by D_{1} alone, if the object A were at F_{1}.

It is useful to know the meridian of maximum axial refraction when combining the effects of two cylindrical refracting surfaces at an oblique axis. To do this, we need to first describe how their axial radii of curvature change with various meridional cross sections. Meridional cross sections of cylindrical surfaces are ellipses until they become parallel lines along the cylinder axis.

12). crossed cylinders

However, assuming a cylinder is parabolic rather than spherical, and that meridional cross sections are parabolic until they rotate into a single line parallel to the cylinder axis, allows for a much simpler approximation of the axial radii of curvature of these meridional cross sections. When these axial radii of curvature are expressed in forms that are additive in terms of refraction, we can then find the maximum sum of those expressions in terms of the meridional axis.

With any axial radius of curvature CB , and index of refraction \boldsymbol{R}, the axial image of a distant object lies at H when:

117

All parabolas have the same shape, in the same way that all circles have the same shape. However, while circles have a single (internal) determining constant, the radius of curvature, parabolas have both a determining constant internal and external to the curve, and can be defined by either.

The axial refractive effects of compound refractive surfaces at B are additive only as their refractive "powers," which equal:
$\boldsymbol{R} / \mathrm{HB}=1 / \mathrm{HC}=[(\mathrm{HB}-\mathrm{HC}) / \mathrm{HC}] / \mathrm{CB}=(\boldsymbol{R}-1) / \mathrm{CB}$

118

For example, a parabola's external determining constant equals BK when:

[2(SN) equals the sagitta corresponding to the sagittal depth SB].

We can set up the necessary
off-axis conditions to determine a parabola's axial center of curvature in terms of its internal determining constant XB, by involving ZN in the geometric solution for XB.

Since as $N \Rightarrow B, Z \Rightarrow C$ by definition, and since $X P=Z N$, P will remain external to the curve, and X can therefore not be its axial center of curvature, but must instead lie somewhere along CB.

In order to keep the determining geometrical relationships axial as $N \Rightarrow B$, they should also depend on line NP being parallel to the axis, and XP being parallel to ZN .

We know X lies between Z and B, since parabolas flatten in their periphery.

122

In order to maintain ZN perpendicular to the parabola at N as $N \Rightarrow B$, the same geometrical relationships must exist that allow for that when N lies at B.

In other words:
$Y P=Y X$ and
$B b=B X$ so
$C B=2(X B)$

Since:
$\frac{T N}{T B}=\frac{T N}{2(T Y)}=\frac{Y B}{2(X B)}=\frac{Y B}{C B}=\frac{T B}{2(C B)}$

We know the external determining constant BK equals 2(CB), and the internal determining constant XB equals (CB)/2.

When 2(SO) equals the minimum sagitta of an oblique parabolic cylinder, and when with equal sagittal depth SB, 2(SV) equals the minimum sagitta of a more highly curved parabolic cylinder with a horizontal axis:

Keeping \triangle OSV constant, as we rotate circle SOG with variable diameter SV'O' around point S:
$\angle O O^{\prime} G$ is constant because $\angle \mathrm{OSG}$ is constant,
so $\Delta \theta=-\Delta a$

As $\mathrm{O}^{\prime} \Rightarrow \mathrm{O}$
SV' increases more than SO' decreases

129

Since the sum $\left(S O^{\prime}+\right.$ SV' $\left.^{\prime}\right)$ increases when either:
$\mathrm{O}^{\prime} \Rightarrow \mathrm{O}, \quad$ or $\mathrm{V}^{\prime} \Rightarrow \mathrm{V}$
there must be a specific $\mathrm{SV}^{\prime} \mathrm{O}^{\prime}$ within $\triangle \mathrm{OSV}$ producing a minimum sum ($\mathrm{SO}^{\prime}+\mathrm{SV}^{\prime}$),
which must be near where small rotations produce only minimal changes in (SO' + SV').

As $\mathrm{V}^{\prime} \Rightarrow \mathrm{V}$
SO' increases more than SV' decreases

130

Since as when one term of the sum (SO' + SV') increases, the other always decreases, this process can be taken to its limits to determine the meridian with minimum (SO' $+\mathrm{SV}^{\prime}$) using:
$\underset{\Delta \theta \Rightarrow 0}{\operatorname{Limit}} \Delta\left(\mathrm{SO}^{\prime}\right)=\quad \underset{\Delta \mathrm{a} \Rightarrow 0}{\text { Limit } \Delta\left(\mathrm{SV}^{\prime}\right)}$

However, the combined effects of refraction are additive only as refractive powers, which, when $R=1.5$, equal:

```
SB/(SO')2 and SB/(SV')2
```

Therefore, the meridian with the maximum combined effects of this refraction can be found using:

```
Limit \(\Delta \quad\left[\mathrm{SB} /\left(\mathrm{SO}^{\prime}\right)^{2}\right]=\) Limit \(\Delta \quad\left[\mathrm{SB} /\left(\mathrm{SV}^{\prime}\right)^{2}\right]\)
\(\Delta \theta \Rightarrow 0 \quad \Delta a \Rightarrow 0\)
```

To solve this equation, all variables must be expressed in terms of the variables approaching zero, so:
$\left\{\right.$ Limit as $\Delta \theta \Rightarrow 0$ of $\left.\left[\Delta \sin ^{2} \theta\right]\right\} /\left\{\right.$ Limit as $\Delta a \Rightarrow 0$ of $\left.\left[\Delta \sin ^{2} a\right]\right\}$
$=\left[\mathrm{SO}^{2} / \mathrm{SV}^{2}\right]$

Solve for
Limit $\Delta \sin ^{2} \theta$
$\Delta \theta \Rightarrow 0$
on the reference circle:

$$
\begin{aligned}
& \mathrm{AW} \geq \mathrm{LD} \| \mathrm{AW} \\
& \angle \mathrm{ALD}=\sim \mathrm{AID} / \mathrm{Al}
\end{aligned}
$$

$$
\geq \sim \mathrm{Al} / \mathrm{Al}=\pi
$$

Establish the necessary functions of θ in terms of line segments and chords.

Then consider the following property of the cyclic quadrilateral circle $A L D W: A D(L W)=A L(D W)+L D(A W)$
$\Delta \mathrm{DIA} \cong \Delta \mathrm{EWD}=\Delta \mathrm{XLA} ; \mathrm{AD}^{2}=\mathrm{AL}^{2}+\mathrm{LD}(\mathrm{AW})$
$A W=L D+2(A L) \frac{L X}{L A} ; \quad A W=L D+2(A L) \frac{I D}{I A}$
$A D^{2}-A L^{2}=L D^{2}+2(L D)(A L) \underline{I D}$

$$
\begin{aligned}
& \theta=\frac{\sim \mathrm{AL}}{\mathrm{AI}} ; \sin ^{2} \theta=\frac{\mathrm{AL}^{2}}{\mathrm{AI}} \\
& \Delta \theta=\frac{\sim \mathrm{LD}}{\mathrm{Al}} ; \sin ^{2} \Delta \theta=\frac{\mathrm{LD}^{2}}{\mathrm{AI}} \\
& (\theta+\Delta \theta)=\frac{\sim \mathrm{ALD}}{\mathrm{AI}} ; \quad \sin ^{2}(\theta+\Delta \theta)=\frac{\mathrm{AD}^{2}}{\mathrm{Al}} \\
& \cos \theta=\frac{\mathrm{IL}}{\mathrm{Al}} \quad ; \quad \cos (\theta+\Delta \theta)=\frac{\mathrm{DI}}{\mathrm{Al}} \\
& \sin \theta=\frac{\mathrm{AL}}{\mathrm{Al}}=\frac{\mathrm{JL}}{\mathrm{IL}} \quad ; \quad \sin \theta \cos \theta=\frac{\mathrm{JL}}{\mathrm{IL}} \frac{\mathrm{IL}}{\mathrm{Al}} \\
& 2(\sin \theta \cos \theta)=\frac{\mathrm{ML}}{\mathrm{Al}} \quad=\sin 2 \theta
\end{aligned}
$$

$\mathrm{Al}\left[\sin ^{2}(\theta+\Delta \theta)-\sin ^{2} \theta\right]=$
$\mathrm{Al}\left[\sin ^{2} \Delta \theta\right]+2(\mathrm{LD})(\mathrm{AL}) \cos (\theta+\Delta \theta)=$
Al $\left[\sin ^{2} \Delta \theta\right]+2(\mathrm{LD})[(\mathrm{Al}) \sin \theta] \cos (\theta+\Delta \theta)$
Divide both sides by AI:
$\sin ^{2}(\theta+\Delta \theta)-\sin ^{2} \theta=\sin ^{2} \Delta \theta+2($ LD $) \sin \theta \cos (\theta+\Delta \theta)$
Limit $\Delta\left(\sin ^{2} \theta\right)=2 \sin \theta(\cos \theta)=\sin 2 \theta$ $\Delta \theta \Rightarrow 0 \quad \sim L D$

Therefore, the meridian with the maximum combined effects of refraction can be found using:

$$
\frac{\sin 2 \theta}{\sin 2 a}=\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}
$$

The first step to solve this problem is to divide SV into SaV so that:

$$
\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}
$$

$\frac{S j}{S V}=\frac{S V}{S b} \quad ; \quad \frac{\mathrm{Sj}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{Sj}}{\mathrm{Sb}}=\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}$

Similar triangles show that:
$\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}$

Make SO $=$ Sj \perp SV to construct:
0

142

Draw ad || SO
Choose a circle through S and V with a variable diameter SV' so that FZV lies on a common chord.

The easiest way to do this involves a template of various circles, each with the location of their diameters already marked.

Double-angle Method:

Given constant $\triangle \mathrm{OSV}$:
$\angle F S V$ is constant
$\angle F S V+(\theta+a)=\pi$ $(\theta+a)$ Is constant

We have already shown how to find single angles $\theta+a$ so that:
$\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}=\frac{\sin 2 \theta}{\sin 2 \mathrm{a}}$
SV^{\prime} is the meridian with the maximum combined effects of refraction because:

$$
\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}=\frac{\mathrm{FZ}}{\mathrm{ZV}}=\frac{\mathrm{FQ} / 2}{\mathrm{RV} / 2}=\frac{\mathrm{FQ}}{\mathrm{RV}}=\frac{\sin 2 \theta}{\sin 2 a}
$$

146

An angle on a circle equals its inscribed arc, divided by the arc's diameter. Since the sum of all angles measured on a circle's circumference add to π, when measured from a circle's center they add to 2π.

If we draw diameter XaP so:
$\mathrm{aX}=\mathrm{aV}$, and $\angle \mathrm{SaP}=2(\theta+\mathrm{a})$

When:
$\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{Sj}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}$
as drawn:

150

$$
\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aX}}=\frac{\mathrm{ah} / \mathrm{aX}}{\mathrm{ah} / \mathrm{aS}}=\frac{\sin 2 \theta}{\sin 2 \mathrm{a}}
$$

When aw || sX, we have divided the doubled angle $2(\theta+a)=\angle S a P$ into $2 \theta=\angle \mathrm{WaP}$, and $2 \mathrm{a}=\angle \mathrm{WaS}$.

