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1). images seen through water 
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If an underwater object D is at a perpendicular 
distance BD from line BN along the water’s surface, 
the image of the object seen directly above from air, 
(along BD), is at Z; and BD/BZ = 4/3.

Isaac Barrow showed that 
the image of object D, 
(when seen from Q 
obliquely along image ray 
MNQ), lies above the 
object, but also towards 
the observer relative to 
DB.

5

As the first step in finding 
an oblique image ray XNQ, 
along which the image of 
object D is seen at a 
designated point X, Isaac 
Barrow described a method 
of finding all possible 
oblique image rays through 
the designated point X, 
without knowing their points 
of refraction (N) along the 
surface of the water, or their 
intersections (M) with the 
perpendicular DB.

6

To do this, he first drew a 
reference right triangle created 
by drawing BE = BZ as shown, 
which created the following 
constant ratios for air/water 
refraction:


BD/BZ = BD/BE = 4/3

DB/DE = 4/√(16-9) = 1.5

ED/EB = √(16-9)/3 = 0.87

7

He showed that, given a 
designated desired clear 
image location X, if we 
draw PW as shown, where:


PW/PX = DB/DE = 1.5
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all possible image rays through 
X, (MXNQ) are found using:


DB/YN = ED/EB = 0.87


by drawing all possible 
reference lines of length 

YN = DB/0.87 through W, in 
order to locate the required 
positions of N.

9

He showed that there can be a maximum of 
two image rays through a designated point X, 
since only two reference line segments within 
the right angle ∠(Y)B(N), and equaling his 
calculated constant YN, can fit through point 
W. This is true since Y2N2 = Y1N1 means that 
the right triangle ΔY2BN2 must equal the right 
triangle ΔN1BY1. 

10

Isaac Barrow showed that 
YN can be drawn as the 
shortest segment through W 
bounded by the right angle 
∠(Y)B(N) when right triangles 
ΔYBN, ΔNWT, and ΔTWY are 
all drawn as similar.
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The length of YN through a designated W and 
bounded by the right angle ∠(Y)B(N) must be 
varied as it is rotated about W to find the position 
of its minimum length. Therefore, the position of N 
and Y must change to find N that corresponds to 
an image ray QNXM with its clear image at the 
designated (unchanging) point X. Furthermore, 
since:

PW/PX = DB/DE is constant, 

ED/EB = DB/YN is also constant, 

so DB varies with the length YN as a constant 
proportion. 
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With an object underwater, Isaac Barrow’s 
method does not allow for finding the location of 
the image ray on which a designated clear image 
is seen, while keeping both the image location 
and the object position constant. It does, 
however, allow for a geometric understanding of 
the conditions required to provide a clear image. 
As will be now demonstrated, with an object in 
air, Isaac Barrow’s method actually does allow 
for finding the location of the image ray on which 
a designated clear image is seen, while keeping 
both the image location and the object position 
constant.
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If an object D in air is at a perpendicular distance BD 
from line BN along the water’s surface, the image of 
the object along that perpendicular when seen from 
underwater is at Z, and BZ/BD = 4/3. 

A reference right triangle created by drawing BE = BD 
as shown, creates the following additional constant 
ratios:

BZ/BE = 4/3

ZB/ZE = 4/√(16-9) = 1.5

EZ/EB = √(16-9)/3 = 0.87

14

Isaac Barrow showed that 
the image of object D, 
(when seen from Q 
obliquely along image ray 
MNQ), lies above the 
object, but also away from 
the observer relative to 
BD.

15

As the first step in finding an 
oblique image ray XMNQ, 
along which the image of 
object D is seen at a 
designated point X, Isaac 
Barrow described a method 
of finding all possible oblique 
image rays through point X, 
without knowing their points 
of refraction (N) along the 
surface of the water, or their 
intersections (M) with the 
perpendicular BD.
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If we draw BY as shown, 
where:


BY/BD = ZB/ZE = 1.5


17

Isaac Barrow showed that 
all possible image rays 
through X, (XMNQ) are 
found using:

XP/WN = MB/YN = EZ/EB = 0.87

by drawing all possible reference lines of length

WN = XP/0.87 through Y.

18

He showed that there can 
be a maximum of two 
image rays through any 
designated point X, since 
only two reference line 
segments within the right 
angle ∠(W)P(N), and 
equaling his calculated 
constant WN, can fit 
through point Y.
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The point X that is the 
clear image of object D 
seen along a to-be-
determined XMNQ is 
found using the minimum 
reference line segment 
length (W)Y(N) through Y, 
that is bounded by the 
right angle ∠(W)P(N).
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Isaac Barrow showed 
that WN can be drawn 
as the shortest segment 
through Y bounded by 
the right angle ∠(W)P(N) 
when right triangles 
ΔWPN, ΔNYT, and 
ΔWYT are all drawn as 
similar. 

21

As any two equal segments W1YN1 and W2YN2 
are rotated about Y in order to approach their 
single common minimum length, N2 approaches 
N1, and ΔN approaches zero. Both the positions 
of N2 and N1 must change during this process of 
finding the point N associated with a designated 
clear image X.

22

Since Y (not W) is the pivot point as segments 
W1YN1 and W2YN2 rotate, BY remains 
unchanged. Therefore, BD also remains 
unchanged because BY/BD = BZ/BE. Therefore, 
unlike when the object is in water, when the 
object is in air, this method can find an image ray 
XMNQ that will produce a designated clear X, 
while holding the object position constant.
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2). prerequisite geometry 
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On a circle with 
diameter EU and 
center N:

25

Two equal arcs ~SE and ~JR 
can be shown to subtend 
equal angles by drawing any 
two parallel lines SD and JF.

Since parallel lines intercept 
equal arcs across a circle, 

~SF  =  ~JD

~SE  + ~SF  =  ~JR  + ~JD 

~EF = ~RD

ED || RF,  and therefore:

∠SDE  =  ∠JFR

26

Since conversely, equal angles along a 
circle subtend equal arcs, any angle 
along any circle can be defined in 
terms of its subtended arc and the 
circle's diameter. 


For example: ∠RFJ = ~RJ/EU


27

Triangles need only two equal angles to be 
the same shape, (or ≅).

Since equal arcs subtend equal angles along 
a circle:

ΔEJD ≅ ΔDFI


FD/FI  =  JE/JD

28



~SJ = ~FD


ΔEJS ≅ ΔEDI 


EI/ED  =  ES/EJ

29

[(FD)(EI)]/[(FI)(ED)] 


= [(JE)(ES)]/[(JD)(EJ)]    


= SE/SF


IE/IF = [(SE)(DE)]/[(SF)(DF)]

which describes an 
important property of any 
cyclic quadrilateral SEDF

30

LD || FE


DE/DF =  LF/LE


IE/IF  = (SE)(LF)/(SF)(LE)


FE/FI 


= {(SE)(LF) + (SF)(LE)}/(SF)(LE)

31

LD || FE


~EL = ~FD 


ΔLSE ≅ ΔFSI 


LS = {(FS)(LE)}/FI

(FE)(LS) = (SE)(LF) + (SF)(LE) 

which describes an important property of 
any cyclic quadrilateral SELF
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∠KNU = ∠MDH 

∠MDH = ~MH/MD 

= ~MH/UE 

= 2(~UM)/UE

=  2∠MEU 

∠KNU = ~UK/UN 

= 2(~UM)/2(UN)       

~UK = ~UM

33

Let K ⇒ N and D ⇒ H:

~UK/UN = ~MH/MD

= ~MH/UE = ∠MEH


~UK/UN = ∠MNU 

2(~UK)/UN = ∠MNH = π

34

NS/NC = NC/NB

NK/NC = CN/CK


ΔNSC = ΔKWB = ΔKNP

NC = KP


ΔCKP = ΔBNA = ΔAOB

NA = KP 


NC = NA = OB 

NC = KB = YB


WK = NS = YN

35

Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:

As N ⇒ B, WK ⇒ YN 
because:

WK/OA ⇒ NK/NA = NK/NC 

= OB/OA = WB/WK


so that:

WK ⇒ OB ⇒ YN
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Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:


As A ⇒ K, WK ⇒ YN

37

Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:


As A ⇒ B, WK ⇒ YN

38

We can therefore 
assume that whenever 
A lies on BK, given 
right triangle ΔKBN, if 
NA = NC, and

ΔCNK ≅ ΔAOB 

≅ ΔKWB

as shown, then:


WK = YN

39

(CK/CN)2 = (AB/AO)2 

= (KB/KW)2 

= (CK2 + AB2)/(CN2 + AO2)


Since  KB2  =  CK2 + AB2


WK2  =  CN2 + AO2  


=  AN2 + AO2 


=  BA2 + BN2 + BO2 - BA2  


= YN2


WK =  YN

40



OB/OA = NK/NA

= N’K’/N’A


KW = YN      

K’W’ = YN’


KB/YN = K’B/YN’

41

QX/EN = KB/YN

= K’B/YN’ = QX/E’N’


EN = E’N’

Only one N’K’X exists for NKX since only one 
E’N’ exists equal to EN. When EN is the 
smallest segment through Y included in the 
right angle EQN, E’ lies at E, and N’ lies at N.

42

NE || GL

TY || EL

HI || NM

HI = NM

NM > NL


NL is the hypotenuse 
of right triangle NEL


NL > NE

HI > NE

43

NE || GL

TY || NL

HI || EM

HI = EM

EM > EL

EL is the hypotenuse of right triangle ENL


EL > EN

HI > EN

44



X = Z when EN is the 
shortest segment 
through Y included 
in right angle EQN

45

In order to find Z 
given ΔYBN and 
NK, we must 
find E using:


ΔYBN 

≅ ΔNYT 

≅ ΔNTE

46

In order to find Z given 
ΔYBQ, we must find EN 
so that:

right triangle 

ΔTYE = ΔQFN

by drawing a circle 
concentric with ⊙Y(F)BQ

around its center D

containing arc ~EN

so that YF lies on chord 
EN.

47

Not only does: 

DY = DF, but also: 

ED = ND and therefore

ΔEDY = ΔNDF

so EY = NF


Since ΔQFN is a right 
triangle, so is ΔTYE.

Once we have found 
EN, we must also find 
NK in order to find Z.

48



3). refraction along a line 

49

ΔNoNK ≅ ΔKNA

because:

~NS = ~NK


Wavefront GoNo refracts 
into wavefront GN along 
GoN, because it travels GoG 
in the same time it travels 
NoN.


R = NNo/GGo 

= NNo/NK = NK/NA

50

and Z is the clear image of object A 
refracted at N along BN

If R = OB/OA,  


and KW = YN:


R = NK/NA

51

given ΔBAO:

use ΔBKW or ΔQBY to find ΔBNY

use ΔBNY to find ΔBKW or ΔQBY

52



4). refraction along a circle 

53

ΔKNA ≅ ΔOCP

R = NK/NA 

= N’K’/N’A 

= CO/CP

54

ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’


Real object A

55

ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’


Virtual object A

can not be projected 
on a screen due to 
refraction at BN.
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ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’


Real image at (X = Z) 
can be projected on a 
screen.

57

ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’


Virtual image at (X = Z) 
can not be projected 
on a screen.
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(AG + AN’)/2AN’  =  (QG + NN’)/2NN’

(XE + XN’)/2XN’  =  (EF + NN’)/2NN’


(QG + NN’)/(EF + NN’)  

=  [(AG + AN’)/2AN’][2XN’/(XE + XN’)]


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’)

⇒ (QG + NN’)/(EF + NN’)

⇒ (AO/AN)(ZN/ZP)

59

Also, when HD = QN’  

and  RJ = FN’


(~QG + ~NN’)/(~EF + ~NN’)

=  2(~ND)/2(~NJ)  =  ~ND/~NJ


As  N’ ⇒ N,  X ⇒ Z,  and:

~DJ ⇒ line segment DJ, so:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ ND/NJ
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DS/JI = CO/CP

JI/JN = NP/NC

DN/DS = NC/NO

ND/NJ = (NP/NO)(CO/CP)


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ (NP/NO)(CO/CP)


and therefore:

(AO/AN)(ZN/ZP) ⇒ (NP/NO)(CO/CP)

61

Thus R = CO/CP, and Z, (along both NP and CW), 
is the clear image of A refracted along ~BN, when: 

NT||CO, so: 

AO/AN = CO/NT and:


NW||CP, so:

ZN/ZP = NW/CP 
and: 


NW/NT = NP/NO

(ΔWNT ≅ ΔPNO)

62

The off-axis rays from 
any on-axis object A, 
(real or virtual), can not 
form a virtual on-axis 
image at Z because 
NW must be less than 
CP for Z to be virtual; 
but NW must also be 
greater than NT.

63

The off-axis rays 
from any real on-
axis object A can 
not form a real 
on-axis image at 
Z because NW 
must be greater 
than (or equal to) 
CP for Z to be 
real; but NW 
must also be 
greater than NT.
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The off-axis rays 
from any real on-axis 
object A can not 
form a real on-axis 
image at Z because 
NW must be greater 
than (or equal to, as 
shown here) CP for 
Z to be real; but NW 
must also be greater 
than NT.

65

The off-axis rays from a virtual on-axis 
object A can form a real on-axis image at 
Z, if NW is greater than CP, and WT lies 
along the axis.

66

Since: 

∠NWT = ∠NPO = ∠NCO   

and NW||CP


WT lies along the axis when:


ΔNCO ≅ ΔZCP


67

When off-axis rays 
from a virtual on-axis 
object A form a real 
on-axis image Z, this 
occurs at all points N 
because:

ΔACN ≅ ΔNCZ for all N

68



5). refraction through a circle’s center

69

Keeping:


R  =  (CO/CP)  =

(NO/NP)(AO/AN)(ZN/ZP)


constant as:

 N  ⇒  B:


(BC/BC)(AC/AB)(ZB/ZC)  ⇒  R


70

Refraction through a circle’s center occurs 
when N lies at B, so that an object’s ray 
from A to N lies along ABC, and an image 
ray lies along BCZ. The locations of the 
object A and image Z along the optic axis 
BC are described by the equation:


R = CO/CP = (AC/AB)(ZB/ZC) 


71

If we draw A and Z along 
the optic axis BC as if it 
were a circle, and draw 
CDL so that AL || ZB:

ΔACB ≅ ΔZCD, and:

(AC/AB)(ZB/ZC)  =

(ZC/ZD)(ZB/ZC)  = 

(ZB/ZD)

so as the reference circle’s 

radius ⇒ ∞

(ZB/ZD)  ⇒  R
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AL  ll  ZB

AZ = BL

~AZ = ~BL


HZ  ll  CL

ZC = LJ

~ZC = ~LJ


~AZ + ~ZC = ~AZC

~BL + ~LJ = ~BLJ


~AZC = ~BLJ

AJ  ll  CB

73

HZ  ll  CL

ZB/ZD = HB/HC

ΔHBZ ≅ ΔHJC

when ΔHJC = ΔIAB:

HC = IB, and:

IB/IA  =  HZ/HB


This results in 

Newton’s Equation  
as the reference circle’s 
radius ⇒ ∞:

(AI)(ZH) = (BI)(BH) 

74

ΔHCZ ≅ ΔHJB ≅ ΔBAZ

(HC/HZ)  =  (BA/BZ)

[1/(HZ)(BA)] = [1/(HC)(BZ)]

75

as the reference circle’s radius ⇒ ∞:

[1/(HZ)(BA)] = [1/(HC)(BZ)] ⇒ R/(HB)(BZ)

and the resulting possible sums occur:


HZ= HB + BZ

HB = HZ + BZ

BZ = HZ + HB


which, when multiplied by the above three 
factors, form the conjugate foci 
equations. 
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The conjugate foci equations allow for 
the effect of axial refraction at a circle 
to be expressed as the term:


 (1/HC)  =  (R/HB)


which is then additive with object 
vergence, defined as (1/BA); or image 
vergence, defined as (R/BZ).
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6). afocal angular magnification/
minification 

78

Afocal Angular Magnification 

When distance 
refraction at ~JDE is 
followed by 
refraction into 
distance at ~QGS 
along axis DGF as 
shown; 

as ∠JFD = ∠SFG, 
and both approach 
zero: 

79

Afocal Angular Minification

Or when distance 
refraction at ~JDE is 
followed by refraction 
into distance at 
~QGS along axis 
FDG, as shown; 

as ∠JFD = ∠SFG, 
and both approach 
zero:

80



θ/α  ⇒  (~LD/GD)/(~YG/GD)  as P  ⇒  F

θ/α  ⇒  (FD/FG)   as P  ⇒  F

so that afocal axial angular 
magnification/minification equals:


FD/FG

81

7). retinal image size magnification 

82

The top diagram 
illustrates a standard 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HoZo.

83

The bottom diagram 
illustrates any 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HZ.

84



As  N ⇒ B,  the retinal image size 
magnification,  ZH/ZoHo,  (relative to an 
arbitrary standard which factors out with 
subsequent comparisons), then approaches 
its axial value:


ZQ/ZoQo  =  ZC/ZoCo  =  HC/HoCo 


=  (BH/R)/(BHo/R)  =  BH/BHo


85

8). axial magnification of distance 
correction 

86

Once again 
representing the optic 
axis BCZ as a circle of 
infinite radius, the 
distant object A is 
focused by the curve of 
radius BC towards the 
axial object Z, (which 
lies at the retina H when 
there is no distance 
refractive error).

87

additional refraction 
at G (at B) will create 
distance refractive 
error and a 
combined single 
refractive surface of 
radius  BL.

88



A distance correction 
must focus the 
distant object A 
towards the focal 
point F of the 
refractive error G, so 
that JF || BE, in order 
to move Z back to H.

89

The distance 
correction at D:

90

Since the distance 
correction at D moves Z 
to H, rays leaving G 
after this correction 
must be afocal, resulting 
in afocal axial angular 
magnification equaling:


FD/FG (= FD/FB)


91

The (total) axial magnification of distance 
correction equals:


M  =  (BH/BHo)(FD/FB)
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When the front surface of a spectacle lens that 
corrects distance refractive error is not flat, it is 
convex; and adds an additional “shape” factor, 
(fq/ft), to the afocal axial magnification of 
distance correction. (Point “t” lies at D, and 
FD/FB remains the “power” factor of the afocal 
axial magnification of distance correction). 

93

ΔEBH ≅ ΔEJL


If E is at Ho, the distance refractive error is 
completely due to an axial length that is not 
standard. 


If ΔEJL ≅ ΔIoFB, then:


M  =  (FB/FIo)(FD/FB)  =  FD/FIo


There is then no (total) axial magnification of 
distance correction if the correction D lies at Io, 
the front focal point of the standard eye.
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9). axial magnification of near 
correction 

95

There is no afocal axial 
angular magnification 

FD/FB when object A is 
at distance with an 
emetropic eye. 

(The refractive error at 
G, (at B), is zero; and 
the focal point F of that 
refractive error lies at 
infinity).

96



There is also no afocal 
axial angular magnification 

when object A is at the 
front focal point of an 
uncorrected myopic eye.  
(The system is not afocal, 
and involves only one 
refracting element).

97

As discussed, a 
distance myopic 
correction at D 
creates afocal axial 
angular minification:


FD/FG   <  1  

and this is relative to either the myopic eye 
with object A at its front focal point F, or the 
emetropic eye with object A at distance.

98

Removing the 
myopic distance 
correction at D with 
a converging lens 
at D removes this 
afocal axial angular 
magnification with 
the factor:

FG/FD  >  1


and this magnification of near correction is 
relative to the distance corrected myope.

99

If additional converging 
power is added to the 
converging lens so that 
the near focal point is in 
focus for an emetropic 
eye, which we then 
consider to be the 
reference eye, the 
magnification of near 
correction is still that 
which is removed with the 
factor:

        FG/FD  >  1

100



10). object angular subtense 
magnification 

101

When an object at a 
standard distance 
Fs is moved to F: 

102

The object angular 
subtense 
magnification

equals: 

θ/α   =  (~GFs/BFs)/(~EFs/BFs)

103

as    XFs  ⇒   0

the object angular subtense magnification 
approaches its axial value:


θ/α  ⇒  WFs/XFs  =  WFs/YF  =  BFs/BF

which equals the axial 

object angular subtense magnification. 

104



The ratio describing axial object angular 
subtense magnification:


BFs/BF


when multiplied by the ratio describing near 
magnification due to a single converging 
lens producing parallel light for an 
emmetropic eye:


FB/FD

105

produces a ratio which factors out the 
object’s actual distance to the eye, 
confirming that when a converging 
lens is used with its front focal point at 
the object, so parallel light leaves the 
converging lens from the object, the 
image size is the same regardless of 
the object-to-eye distance.

106

11). stand magnifier magnification

107

When the 
converging lens 
at D is split into 
two converging 
lenses:

108



with the same 
combined 
focus F:

109

the ratio describing axial near magnification 
due to a single converging lens producing 
parallel light for an emmetropic eye:


FB/FD


must be expressed as if all convergence 
occurred at a single unknown axial point De:


FB/FDe

110

De can be located using 
triangles.


D₂G/D₂F  =  DeQ/DeF

     

D₂G/D₂F₁  =  D₁J/D₁F₁

D₂F(DeQ/DeF)  =  D₂F₁(D₁J/D₁F₁) 

                                

DeQ/DeF  =  (D₂F₁/D₂F)(D₁J/D₁F₁)  


1/DeF  =  (D₂F₁/D₂F)(1/D₁F₁) 


FB/FDe  =  (D₂F₁/D₂F)(FB/D₁F₁)    
111

Multiplying the axial object subtense 
magnification by the axial 
magnification of near correction 
(relative to the same eye without 
refractive error) produces:


BFs/FDe  =  (D₂F₁/D₂F)(BFs/D₁F₁)

112



The converging lens D2 creates a virtual image F1 of 
an object at F. When considering a stand magnifier 
with lens D2, constant stand height D2F, and reading 
spectacle add or ocular accommodation D1, the 
stand magnifier’s (constant) enlargement of the 
object at F equals: 


E  =  D2F1/D2F


The stand magnifier’s axial magnification is its 
(constant) enlargement factor E, multiplied by what 
would be produced by D1 alone, if the object A were 
at F1.

113

12). crossed cylinders

114

It is useful to know the meridian of maximum 
axial refraction when combining the effects of 
two cylindrical refracting surfaces at an 
oblique axis. To do this, we need to first 
describe how their axial radii of curvature 
change with various meridional cross sections. 
Meridional cross sections of cylindrical 
surfaces are ellipses until they become parallel 
lines along the cylinder axis.

115

However, assuming a cylinder is parabolic 
rather than spherical, and that meridional 
cross sections are parabolic until they rotate 
into a single line parallel to the cylinder axis, 
allows for a much simpler approximation of 
the axial radii of curvature of these 
meridional cross sections. When these axial 
radii of curvature are expressed in forms that 
are additive in terms of refraction, we can 
then find the maximum sum of those 
expressions in terms of the meridional axis. 
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With any axial radius of curvature CB, and 
index of refraction R, the axial image of a 
distant object lies at H when:

R = HB/HC
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The axial refractive effects of compound 
refractive surfaces at B are additive only as their 
refractive "powers," which equal:

  R/HB  =  1/HC  =  [(HB - HC)/HC]/CB  =  (R- 1)/CB
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All parabolas have the same shape, in the 
same way that all circles have the same 
shape. However, while circles have a single 
(internal) determining constant, the radius of 
curvature, parabolas have both a 
determining constant internal and external 
to the curve, and can be defined by either.  
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For example, a parabola's external determining 
constant equals BK when: 

[2(SN) equals the sagitta corresponding to the 
sagittal depth SB].

SB  =  BT

BT      BK

120



We can set up the necessary 
off-axis conditions to 
determine a parabola's axial 
center of curvature in terms 
of its internal determining 
constant XB, by involving ZN 
in the geometric solution for 
XB.
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We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the determining geometrical 
relationships axial as N ⇒ B, they should also 
depend on line NP being parallel to the axis, and 
XP being parallel to ZN.  
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Since as N ⇒ B, Z ⇒ C by definition, and 
since XP = ZN, P will remain external to 
the curve, and X can therefore not be its 
axial center of curvature, but must 
instead lie somewhere along CB. 
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In order to maintain ZN perpendicular to the 
parabola at N as N ⇒ B, the same geometrical 
relationships must exist that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)
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Since:


TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

We know the external determining constant BK 
equals 2(CB), and the internal determining 
constant XB equals (CB)/2. 
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Axial refracting power equals      (R- 1)/CB

                                                       

Since for a parabola:


SB/SN  =  SB/TB  =  TB/[2(CB)]

           

If      R = 1.5


The axial refracting power of a parabola 
equals:


1/[2(CB)]  =  SB/SN2   =   1/BK
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When 2(SO) equals the minimum sagitta of an 
oblique parabolic cylinder, and when with equal 
sagittal depth SB, 2(SV) equals the minimum 
sagitta of a more highly curved parabolic cylinder 
with a horizontal axis:
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Keeping ΔOSV constant, as we rotate circle SOG 
with variable diameter SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα
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As O' ⇒ O

SV' increases more than SO' decreases
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As V' ⇒ V

SO' increases more than SV' decreases
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Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations produce 
only minimal changes in (SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, this 
process can be taken to its limits to determine 
the meridian with minimum  (SO' + SV') using:


Limit  Δ(SO')       =        Limit  Δ  (SV')

Δθ ⇒0                           Δα ⇒0  
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However, the combined effects of refraction 
are additive only as refractive powers, 

which, when  R = 1.5,  equal:


 SB/(SO')2   and    SB/(SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
using:

Limit  Δ    [SB/(SO')2]   =    Limit  Δ     [SB/(SV')2]

Δθ ⇒0                                Δα ⇒0      


To solve this equation, all variables must be 
expressed in terms of the variables approaching 
zero,   so: 
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Limit  Δ{[SB(SO/SO')2]/SO2}   =  Limit  Δ{[SB(SV/SV')2]/SV2}

Δθ ⇒0                                        Δα ⇒0   


Limit  Δ{[(SB)sin2 θ]/SO2} =  Limit  Δ{[(SB)sin2 α]/SV2}

Δθ ⇒0                                  Δα ⇒0   


(SB/SO2)   Limit   {Δsin2 θ}  =  (SB/SV2)   Limit   {Δsin2 α}

                 Δθ ⇒0                                    Δα ⇒0   
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{Limit as Δθ ⇒ 0 of [Δsin2θ]}/{Limit as Δα ⇒ 0 of [Δsin2α]}       


     =  [SO2/SV2]
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Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0

on the reference circle:

AW ≥ LD || AW

∠ALD  =  ~AID/AI 

≥ ~AI/AI = π

                       

Establish the necessary functions of θ in terms 
of line segments and chords.
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θ = ~AL      ;   sin2 θ = AL2

        AI                        AI


Δ θ = ~LD   ;   sin2 Δ θ = LD2

            AI                        AI


(θ + Δ θ) = ~ALD       ;     sin2 (θ + Δ θ) = AD2

                             AI                                         AI


cos θ = IL                  ;     cos (θ + Δ θ) = DI

             AI                                                AI


sin θ = AL  = JL         ;     sin θ cos θ = JL  IL

            AI       IL                                     IL  AI


2 (sin θ cos θ) = ML      = sin 2θ

                          AI
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Then consider the following property of the cyclic 
quadrilateral circle ALDW:  AD(LW) = AL(DW) + LD(AW)  


ΔDIA  ≅  ΔEWD  =  ΔXLA  ;  AD2 = AL2 + LD(AW)


AW = LD + 2(AL) LX   ;   AW = LD + 2(AL) ID   

                            LA                                  IA

                  


AD2 - AL2  =  LD2 + 2(LD)(AL) ID

                                               IA

139

AI [sin2(θ + Δθ) - sin2θ] = 


AI [sin2Δθ] + 2(LD)(AL)cos(θ + Δθ) =


AI [sin2Δθ] + 2(LD) [(AI)sinθ] cos(θ + Δθ)


Divide both sides by AI:


sin2(θ + Δθ) - sin2θ = sin2Δθ + 2(LD) sinθ cos(θ + Δθ)


Limit     Δ(sin2 θ)   =  2 sinθ (cos θ)  =  sin 2θ

Δθ ⇒0     ~LD
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Therefore, the meridian with the maximum 
combined effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV 
into SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  = Sj  ⊥  SV to construct:
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Sj   =  SV       ;        Sj2   =   Sj   =   SO2


SV      Sb                SV2       Sb       SV2

Similar triangles 
show that:


SO2    =    aS

SV2           aV
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Draw ad || SO


Choose a circle 
through S and V 
with a variable 
diameter SV' so that 
FZV lies on a 
common chord.
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The easiest way to do 
this involves a template 
of various circles, each 
with the location of their 
diameters already 
marked. 
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SV' is the meridian 
with the maximum 
combined effects 
of refraction 
because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Double-angle Method:
Given constant ΔOSV:

∠FSV is constant

∠FSV + (θ + α) = π

(θ + α) Is constant

We have already shown 
how to find 

single angles θ + α  

so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α
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An angle on a circle 
equals its inscribed 
arc, divided by the 
arc's diameter. Since 
the sum of all angles 
measured on a circle's 
circumference add to 
π, when measured 
from a circle's center 
they add to 2π.
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Therefore:


2(∠FSV) + 2 (θ + α) = 2π
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When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α

When aw || sX, we have divided the doubled angle 

2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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