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Introductory 
Geometry
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∠DNA  =  2∠DMA 

∠DNC  =  2∠DMC


∠ANC  

=  ∠DNA  +/-  ∠DNC

= 2(∠DMA +/- ∠DMC)

= 2∠AMC = 2∠AM’C
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~UK/UN = ~MH/MD = 2~UM/UE = 2~UM/2UN


~UK = ~UM
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As K ⇒ N,  and  D ⇒ H:


2~KU/UN =  2∠MNU = ∠MNH   ⇒  π
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∠FDE + ∠DEF + ∠EFD = π

∠FDE =  ~EF/DM

∠DEF =  ~DF/DM

∠EFD =  ~DE/DM
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SD ||  FJ

ΔEJD ≅ ΔDFI,  FD/FI  =  JE/JD 

ΔEJS ≅ ΔEDI,  EI/ED  =  ES/EJ 

(FD)(EI) / (FI)(ED)

= (JE)(ES) / (JD)(EJ)  = SE/SF


IE/IF = (SE)(DE) / (SF)(DF)
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FE/FI   =   {(SE)(LF) + (SF)(LE)} / (SF)(LE)


LD || FE,      ~EL  =  ~FD,      ΔLSE  ≅  ΔFSI     

LS/FS  =  LE/FI,       LS  =  FS(LE) / FI 


LD || FE 


DE/DF  =  LF/LE 


IE/IF 

=  (SE)(LF) / (SF)(LE)


10



Pythagorean’s Theorem can be shown when the 
cyclic quadrilateral SELF is a rectangle, and the 
law of cosines can be shown when it is a trapezoid.

Ptolemy’s Theorem: 
(FE)(LS)  =  (SE)(LF) + (SF)(LE)
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When the cyclic quadrilateral SELF 
is a trapezoid, and:


LF  >  ES  ||  LF


∠ELF = ~ESF/EU < ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF[LF - 2(EL)(LR/LE)]


LR/LE  =  UF/UE  =  cosine ∠ELF  
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When the cyclic quadrilateral SELF is 
a rectangle, so:


LF  =  ES  ||  LF


∠ELF = ~ESF/EU = ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF2
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When the cyclic quadrilateral SELF 
is a trapezoid, and:


LF  <   ES  ||  LF


∠ELF = ~ESF/EU > ~EU/EU = π/2


EF2  =  EL2  +  LF(ES)


LF(ES) = LF[LF + 2(EL)(TS/SF)]


TS/SF  =  UF/UE  =  cosine ∠ELF  
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Refraction Along a 
Line
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Let:

(NK/NC)  =  (CN/CK)


When:

ΔCKP ≅ ΔKNP 

= ΔNSC = ΔKWB,


ΔCKP = ΔBNA = ΔAOB


and KW = YN
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But also, whenever:


KB2 = KN2 - BN2 

= KN2 - (AN2 - AB2) 

= (KN2 - AN2) + AB2


and:

AN2  -  BN2  =  BO2 -  AO2


so:

(AO2 + AN2)  

=  (BO2 + BN2)  =  YN2 
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if:

(KB/KW) = (AB/AO) = (CK/CN

so:

KB2/KW2  

=  (AB2 + CK2)/(AO2 + CN2)


and if:

AN = CN,

then:

KW2 = (AO2 + CN2) = YN2


KW = YN
18



As N ⇒ B,  KW ⇒ YN

because:

KW/OA  ⇒  NK/NA 

= NK/NC 

= OB/OA 

= WB/WK


so that:

KW  ⇒  OB  ⇒  YN

Under these conditions, it can also be 
shown that:
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As A  ⇒  K, 

KW  ⇒  YN

As A  ⇒  B, 

KW  ⇒  YN

|

|

|

|

|

|

|

|

|

|

|

|

and both that:
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Therefore, whenever 

A lies on KB 

of right triangle ΔKBN,

 

if:

ΔCNK  ≅  ΔAOB 

≅  ΔKWB, 

and NA = NC, 


then KW = YN
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OB/OA = NK/NA = N’K’/N’A


KW = YN      

K’W’ = YN’


KB/YN = K’B/YN’

|

|

|

|

|

|

|

|

|

|

|

|

QX/EN = KB/YN

= K’B/YN’ = QX/E’N’


EN = E’N’

Only one N’K’X 
exists for NKX since 
only one E’N’ exists 
equal to EN.
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E’ lies at E,  and 

N’ lies at N. 


Also, QX varies with 
EN because: 

QX/EN = KB/YN 

= KB/KW, which is a 
constant.


When EN is changed to become the smallest 
segment through Y, 

bound by the right angle EQN:
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NE || GL

TY || EL

HI || NM

HI = NM > NL


NL is the hypotenuse of 
right triangle NEL, so:


NL > NE

HI > NE

To specify EN as the shortest hypotenuse 
through Y:
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But also:


NE || GL

TY || NL

HI || EM

HI = EM > EL

EL is the hypotenuse of right triangle ENL, so:


EL > EN

HI > EN
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Let X = Z when EN is 
the shortest segment 
through Y included in 
right angle EQN.


In order to find Z 
given ΔYBN, we must 
find E = E’ using:

ΔYBN ≅ ΔNYT ≅ ΔNTE
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In order to find Z given ΔYBQ, we must find 

EN = E’N’ by making ΔTYE a right triangle.
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Draw a concentric 
circle around ⊙YBQ 
using its center at D, 
(the midpoint of 
hypotenuse YQ), 
containing an arc ~EN, 
so that YF lies on its 
chord EN. The arc 
intercepted by ∠DEN 
then equals that 
intercepted by ∠DNE. 
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∠DEY = ∠DNF 

DY = DF ;  DE = DN 


ΔEDY = ΔNDF

EY = NF


Since ΔQFN is a right 
triangle, so is ΔTYE.
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use ΔBNY to find ΔBKW and ΔQBY,


use ΔQBY or ΔBKW to find ΔBNY.

WK = YN


Given   ΔBAO:
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ΔNoNK ≅ ΔKNA

because:

~NS = ~NK

across diameter GoN.


Wavefront GoNo refracts 
into wavefront GN along 
GoN, since it travels GoG in 
the same time it travels 
NoN.

ℝ = NNo/GGo = NNo/NK = NK/NA
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and Z is the clear image of object A 
refracted at N (= N’), along BN, because 
the two possible refracted rays through Z 
coincide at N.

Therefore, if  

ℝ  =  OB/OA,  

and WK = YN; 

then, 

ℝ  =  NK/NA
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Refraction Along a 
Circle
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ΔKNA  ≅  ΔOCP

ℝ  =  NK/NA 

=  N’K’/N’A 

=  CO/CP
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Real object A:


ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’
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Virtual object A, 
which can not be 
projected on a 
screen due to 
refraction at BN:


ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’
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Real image at X, 

(will be defined as clear 
as N’ ⇒  N, and X  ⇒  Z), 
can be projected on a 
screen:


ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’
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Virtual image at X, 

(will be defined as clear 
as N’ ⇒  N, and X  ⇒  Z),

can not be projected on 
a screen:


ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’
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(AG + AN’)/2AN’  =  (QG + NN’)/2NN’

(XE + XN’)/2XN’  =  (EF + NN’)/2NN’


(QG + NN’)/(EF + NN’)  

=  [(AG + AN’)/2AN’][2XN’/(XE + XN’)]


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’)

⇒ (QG + NN’)/(EF + NN’)

⇒ (AO/AN)(ZN/ZP)
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Also, when HD = QN’  

and  RJ = FN’


(~QG + ~NN’)/(~EF + ~NN’)

=  2(~ND)/2(~NJ)  =  ~ND/~NJ


As  N’ ⇒ N,  X ⇒ Z,  and:

~DJ ⇒ line segment DJ, so:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ ND/NJ
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DS/JI = CO/CP

JI/JN = NP/NC

DN/DS = NC/NO

ND/NJ = (NP/NO)(CO/CP)


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ (NP/NO)(CO/CP)


and therefore:

(AO/AN)(ZN/ZP) ⇒ (NP/NO)(CO/CP)
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Thus ℝ  = CO/CP, and Z, (along both NP and CW), 
is the clear image of A refracted along ~BN, when: 

NT||CO, so: 

AO/AN = CO/NT and:


NW||CP, so:

ZN/ZP = NW/CP 
and: 


NW/NT = NP/NO

(ΔWNT ≅ ΔPNO)
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The off-axis rays from 
any on-axis object A, 
(real or virtual), can not 
form a virtual on-axis 
image at Z because 
NW must be less than 
CP for Z to be virtual; 
but NW must also be 
greater than NT.
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The off-axis rays 
from any real 

on-axis object A 
can not form a real 

on-axis image at Z 
because NW must 
be greater than (or 
equal to) CP for Z 
to be real; but NW 
must also be 
greater than NT.
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The off-axis rays from a virtual on-axis 
object A can form a real on-axis image at Z, 
if NW is greater than CP, and WT lies along 
the axis.
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Since: 

∠NWT = ∠NPO = ∠NCO   

and NW || CP


WT lies along the axis when:


ΔNCO ≅ ΔZCP
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When off-axis rays 
from a virtual on-axis 
object A form a real 
on-axis image Z, this 
occurs at all points N 
because:

ΔACN ≅ ΔNCZ for all N,

(since they share proportional sides 
around a common angle).
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This can also be demonstrated using similar right triangles: 

ΔSAN ≅ CON, and ΔYZN ≅ ΔCPN, 

so that: (AO/AN)(ZN/ZP) = (SC/SN)(YN/YC).


Since: CY/CN = CN/CS = (CY + CN)/(CN + CS) = NY/NS

(SC/SN) = (NC/NY), and:


(AO/AN)(ZN/ZP) = CN/CY
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But it is also true that: 

(CO/CP)(NP/NO) = CN/CY,  because:


(CO/CP)(NP/NO) = (LY/LN)(PN/PC) = 

= (QN/QY)(PN/PC) = (QN/QY)(ZN/ZY) = 

QN (ZN)/QY(ZY) which, by the property of cyclic 
quadrilaterals shown in slide #7, equals CN/CY
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Keeping:


ℝ  =  (CO/CP)  =  (NO/NP)(AO/AN)(ZN/ZP)


constant,  as  N  ⇒  B:


(BC/BC)(AC/AB)(ZB/ZC)  ⇒  ℝ
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Refraction Through a 
Circle’s Center

(Axial Refraction)
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Refraction through a circle’s center occurs 
when N lies at B, so that an object’s ray 
from A to N lies along ABC, and an image 
ray lies along BCZ. The locations of the 
object A and image Z along the optic axis 
BC are described by the equation:


ℝ  = CO/CP = (AC/AB)(ZB/ZC) 
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If we draw A and Z along 
the optic axis BC as if it 
were a circle, and draw 
CDL so that AL || ZB:

ΔACB ≅ ΔZCD, and:

(AC/AB)(ZB/ZC)  =

(ZC/ZD)(ZB/ZC)  = 

(ZB/ZD)

so as the reference circle’s 

radius  ⇒  ∞,

(ZB/ZD)  ⇒  ℝ
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AL  ll  ZB

AZ  =  BL

~AZ  =  ~BL


HZ  ll  CL

ZC  =  LJ

~ZC  =  ~LJ


~AZ + ~ZC  =  ~AZC

~BL + ~LJ  =  ~BLJ


~AZC  =  ~BLJ

AJ  ll  CB
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HZ  ll  CL

ZB/ZD  =  HB/HC

ΔHBZ ≅ ΔHJC

when ΔHJC  =  ΔIAB:

HC  =  IB, and:

IB/IA  =  HZ/HB


This results in 

Newton’s Equation:

as the reference circle 
radius  ⇒  ∞,

(AI)(ZH)  =  (BI)(BH)
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ΔHCZ ≅ ΔHJB ≅ ΔBAZ

(HC/HZ)  =  (BA/BZ)

[1/(HZ)(BA)]  =  [1/(HC)(BZ)]
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as the reference circle’s radius ⇒ ∞,

[1/(HZ)(BA)]  =  [1/(HC)(BZ)]  ⇒  ℝ/(HB)(BZ)

and the resulting possible sums occur:


HZ  =  HB + BZ

HB  =  HZ + BZ

BZ  =  HZ + HB


which, when multiplied by the above three 
factors, form the conjugate foci equations. 

57



The conjugate foci equations allow for 
the effect of axial refraction at a circle 
to be expressed as the term:


 (1/HC)  =  (ℝ/HB)


which is then additive with object 
vergence, defined as (1/BA); or image 
vergence, defined as (ℝ/BZ).

58



Afocal Angular 
Magnification/Minification
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When off-axis 
distance refraction 
at ~JDE is followed 
by refraction into 
distance at ~QGS 
along axis DGF as 
shown; 

as ∠JFD  =  ∠SFG, 
and both approach 
zero: 
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Or when off-axis 
distance refraction at 
~JDE is followed by 
refraction into 
distance at ~QGS 
along axis FDG, as 
shown; 

as ∠JFD  =  ∠SFG, 
and both approach 
zero:
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θ/α  ⇒  (~LD/GD)/(~YG/GD)  as P  ⇒  F

θ/α  ⇒  (FD/FG)   as P  ⇒  F

so that afocal axial angular 
magnification/minification equals:


FD/FG
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Retinal Image Size 
Magnification/Minification
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The top diagram 
illustrates a standard 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HoZo.
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The bottom diagram 
illustrates any 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HZ.
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As  N  ⇒  B,  the retinal image size 
magnification,  ~ZH/ZoHo, 

approaches its axial value:


ZQ/ZoQo   =   ZC/ZoCo   =   HC/HoCo 


=   (BH/ℝ)/(BHo/ℝ)  =  BH/BHo
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The retinal image size magnification for 
eyes with single refracting surfaces will 
factor out standard values when 
comparisons are made between non-
standard eyes, and this is clinically valid 
to the degree that optical components 
within the eyes introduce no magnification 
differences.

67



Distance Correction 
Magnification/Minification 
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Once again representing the 
optic axis BCZ as a circle of 
infinite radius, the distant 
object A at ∞ is focused by 
the radius BC of the 
presumed single refracting 
surface towards the axial 
image Z, which lies at the 
retina H when there is no 
distance refractive error. (BHo 
represents the standard axial 
length, and BCo represents 
the standard single refracting 
curvature radius).
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As pictured in the next three slides, 
additional refraction G (at B) will create an 
“ametropic” eye, with “distance refractive 
error,” and a combination curvature effect 
with total radius BL instead of BC, moving 
image Z from the retina at H to its erroneous 
location at E. The “front focal point” of the 
“ametropic” eye is defined as point I. 

A “distance correction” must focus the 
distant object towards F, so that JF || BL, in 
order to move image Z back to the retina H.
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The distance 
correction at D:
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Since the distance correction D moves image Z 
from E to retina H, rays leaving the refractive 
error G (at B) after this correction is in place must 
be afocal. This results in afocal axial angular 
magnification equaling:


FD/FG  (=  FD/FB)


Therefore, the total axial magnification of 
distance correction equals:


M  =  (BH/BHo)(FD/FB)
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When the front surface of a spectacle lens that 
corrects distance refractive error is not flat, it is 
convex; and adds an additional “shape” factor, 
(fq/ft), to the afocal axial magnification of 
distance correction. (Point “t” lies at D, and 
FD/FB remains the “power” factor of the afocal 
axial magnification of distance correction). 

76



“Axial Ametropia” occurs when E is at Ho, (and point I 
is therefore at Io, the front focal point of the standard 
eye). The distance refractive error is then completely 
due to an axial length BZ, (or BH), that is not standard.


ΔHoBH  =  ΔEBH ≅ ΔEJL  =  ΔIoFB

(BH/BHo)  =  (FB/FIo)


M  =  (FB/FIo)(FD/FB)  =  FD/FIo


Therefore, in the case of axial ametropia, there is no 
total axial magnification of distance correction if the 
correction D lies at Io.
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“Refractive Ametropia” occurs when the retina H 
is at at Ho. The distance refractive error at G 
moving image Z to E is then completely due to a 
refracting radius BL that is not the standard BCo.


When the distance correction D lies at B:


M = (BH/BHo)(FD/FB) = 1
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Near Correction 
Magnification
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There is no afocal axial 
angular magnification 
of distance correction 

with a distant object 
“A,” and an emetropic 
eye whose refractive 
error at G (at B) is by 
definition zero, (with its 
focal point F at infinity).
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There is also no afocal axial 
angular magnification 

when object A is at the 
front focal point F of an 
uncorrected ametropic eye 
as shown, since this 
“myopic” system is not 
afocal, and involves only 
one refracting element G.
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A distance myopic 
correction at D 
creates afocal axial 
angular minification:


FD/FG   <  1  

and this is relative to either the myopic eye 
with object A at its front focal point F, or the 
emetropic eye with object A at distance.
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Removing the 
myopic distance 
correction at D with 
a converging lens 
at D removes this 
afocal axial angular 
magnification with 
the factor:

FG/FD  >  1


and this magnification of near correction is 
relative to the distance corrected myope.
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If additional converging 
power is added to the 
converging lens so that 
the near focal point is in 
focus for an emetropic 
eye, which we then 
consider to be the 
reference eye, the 
magnification of near 
correction is still that 
which is removed with the 
factor:

        FG/FD  >  1
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Near Object Positional 
Magnification
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When an object at a 
standard distance 
Fs is moved to F: 
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The object angular 
subtense 
magnification

equals: 

θ/α   =  (~GFs/BFs)/(~EFs/BFs)
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as    XFs  ⇒   0

the object angular subtense magnification 
approaches its axial value:


θ/α  ⇒  WFs/XFs  =  WFs/YF  =  BFs/BF

which equals the axial 

object angular subtense magnification. 
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Total Near 
Magnification
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The ratio describing axial object angular 
subtense magnification:


BFs/BF


when multiplied by the ratio describing near 
magnification due to a single converging 
lens producing parallel light for an 
emmetropic eye:


FB/FD
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produces a ratio which factors out the 
object’s actual distance to the eye, 
confirming that when a converging lens is 
used with its front focal point at the 
object, so that parallel light leaves the 
converging lens from the object, the 
image size is the same regardless of the 
object-to-eye distance.
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Double Refraction 
Systems
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When the 
converging lens 
at D is split into 
two converging 
lenses:
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with the same 
combined 
focus F:

94



the ratio describing axial near magnification 
due to a single converging lens producing 
parallel light for an emmetropic eye:


FB/FD


must be expressed as if all convergence 
occurred at a single unknown axial point De:


FB/FDe
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De can be located using 
triangles.


D₂G/D₂F  =  DeQ/DeF

     

D₂G/D₂F₁  =  D₁J/D₁F₁

D₂F(DeQ/DeF)  =  D₂F₁(D₁J/D₁F₁) 

                                

DeQ/DeF  =  (D₂F₁/D₂F)(D₁J/D₁F₁)  


1/DeF  =  (D₂F₁/D₂F)(1/D₁F₁) 


FB/FDe  =  (D₂F₁/D₂F)(FB/D₁F₁)    
96



Multiplying the axial object subtense 
magnification by the axial 
magnification of near correction 
(relative to the same eye without 
refractive error) produces:


BFs/FDe  =  (D₂F₁/D₂F)(BFs/D₁F₁)
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The converging lens D2 creates a virtual image 
F1 of an object at F. When considering a stand 
magnifier with lens D2, constant stand height 
D2F, and reading spectacle add or ocular 
accommodation D1, the stand magnifier’s 
(constant) enlargement of the object at F equals: 


E  =  D2F1/D2F


The stand magnifier’s axial magnification is its 
(constant) enlargement factor E, multiplied by 
what would be produced by D1 alone, if the 
object A were at F1.

98



Crossed Ophthalmic 
Cylinders 
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It is useful to know the meridian of maximum 
axial refraction when combining the effects of 
two ophthalmic cylinders crossed obliquely. To 
do this, we need to first describe how the axial 
radius of curvature of an ophthalmic cylinder 
changes from infinity along its axis to its 
minimum value perpendicular to that axis. 
Ophthalmic cylinder meridional sections are 
ellipses of variable shape that transform from 
initial front and back parallel lines along the 
cylinder axis to a circular section perpendicular 
to that axis.
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Assume that the meridian of minimum 
ophthalmic cylinder radius occurs in a parabolic 
section, rather than a circular one. 

Now assume that meridional sections maintain 
a parabolic shape as they vary towards a single 
tangential point represented as the cylinder axis 
with an infinite radius of curvature relative to 
that point.
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This will allow for the following relatively easy 
approximation of the axial radii of curvature of 
meridional sections. If these approximate axial 
radii of curvature are expressed in forms that 
are additive in terms of refraction, we can then 
approximate the sum of those expressions for 
any meridional section of obliquely crossed 
ophthalmic cylinders, and we can approximate 
the maximum sum of those expressions with 
the required meridional axis. 
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We know that with any axial radius of curvature 
CB, and index of refraction ℝ, the axial image 
of a distant object lies at H when:

ℝ  = HB/HC
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We also know that the axial refractive effects of 
compound refractive surfaces at B are additive 
only as their refractive "powers," which equal:

 ℝ/HB  =  1/HC  =  [(HB - HC)/HC]/CB  =


(ℝ- 1)/CB

                  

104



All parabolas have the same shape, in the 
same way that all circles have the same 
shape. However, while circles have a single 
(internal) determining constant, the radius of 
curvature, parabolas have both a 
determining constant internal and external 
to the curve, and can be defined by either.  
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For example, a parabola's external determining 
constant equals BK when: 

Both these curves have the same shape. The 
one on the left simply represents a “zoomed in” 
look at the vertex of the one on the right.

SB  =  BT

BT      BK
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We can set up the necessary 
off-axis conditions to 
determine a parabola's axial 
center of curvature in terms 
of its internal determining 
constant XB, by involving ZN 
in the geometric solution for 
XB.
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We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the determining geometrical 
relationships axial as N ⇒ B, they should also 
depend on line NP being parallel to the axis, and 
XP being parallel to ZN.  
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Since as N ⇒ B, 

Z ⇒ C by definition, 

and since XP = ZN, 


P will remain external to the curve, and X can 
therefore not be its axial center of curvature, but 
must instead lie somewhere along CB. 
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In order to maintain ZN perpendicular to the 
parabola at N as N ⇒ B, the same geometrical 
relationships must exist that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)
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TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

Since TN = SB, the external determining 
constant BK equals 2(CB).

Since TB = 2(YB), the internal determining 
constant XB equals (CB)/2. 
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Refracting power equals:      (ℝ- 1)/CB


If    ℝ  = 1.5,    this equals:    1/[2(CB)]

                                                       

For a parabola:   SB/BT = BT/BK = BT/[2(CB)]

           

so its axial refracting power then equals:     


SB/TB2   = SB/SN2   =   1/BK
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When 2(SO) equals the minimum sagitta of an 
oblique parabolic cylinder, and when with equal 
sagittal depth SB, 2(SV) equals the minimum 
sagitta of a more highly curved parabolic cylinder 
with a horizontal axis:
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Keeping ΔOSV constant, as we rotate circle SOG 
with variable diameter SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα
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Keeping ΔOSV constant,   as O' ⇒ O:

SG and diameter SO' decrease.

SV' increases more than SO' decreases.
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Keeping ΔOSV constant,  as V' ⇒ V:

SG and diameter SO' increase.

SO' increases more than SV' decreases.
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Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or   V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations of SV'O'   
about S produce only minimal changes in the sum 
(SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, the 
minimum (SO' + SV') must occur near where 
small rotations of SV'O' within ΔOSV produce 
equal but opposite changes in SO' and SV'. 
Therefore, the minimum  (SO' + SV') can be 
found by finding the position of SV'O' where:


Limit  Δ (SO')       =        Limit  Δ (SV')

Δθ ⇒0                           Δα ⇒0  
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However, the combined effects of refraction 
are additive only as refractive powers, 

which, when  ℝ  = 1.5,  equal:


 SB/(SO')2   and    SB/(SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
by finding the position of SV'O' where:

Limit  Δ    [SB/(SO')2]   =    Limit  Δ     [SB/(SV')2]

Δθ ⇒0                                Δα ⇒0      


To solve this equation, each expressed limit must 
be transformed into the variable that approaches

zero, so the equation must be transformed into: 
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Limit  Δ{[SB(SO/SO')2]/SO2}   =  Limit  Δ{[SB(SV/SV')2]/SV2}

Δθ ⇒0                                        Δα ⇒0   


Limit  Δ{[(SB)sin2 θ]/SO2} =  Limit  Δ{[(SB)sin2 α]/SV2}

Δθ ⇒0                                  Δα ⇒0   


(SB/SO2)   Limit   {Δsin2 θ}  =  (SB/SV2)   Limit   {Δsin2 α}

                 Δθ ⇒0                                    Δα ⇒0   
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Limit as Δθ ⇒ 0 of (Δsin2 θ)     =  SO2/SV2

Limit as Δα ⇒ 0 of (Δsin2 α)
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Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0       

on the reference circle:

AW   ≥   LD  ||  AW

∠ALD   =  ~AID/AI 


≥  ~AI/AI  =  π

                       

First establish the necessary functions of θ in 
terms of arcs and chords.
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θ  =  ~AL/AI      


sin2 θ  =  AL2/AI2

                              

Δ θ  =  ~LD/AI   


sin2 Δ θ  =  LD2/AI2


(θ + Δ θ)  =  ~ALD/AI    


sin2 (θ + Δ θ)  =  AD2/AI2
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cos θ  =  IL/AI             


cos (θ + Δ θ)  =  DI/AI

                                                           

sin θ  =  AL/AI  =  JL/IL         


sin θ cos θ  =  (JL/IL)  (IL/AI)

                                                           

2 (sin θ cos θ)  =  ML/AI


2 (sin θ cos θ)  =  sin 2θ
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Then consider the following property of the 
cyclic quadrilateral circle ALDW:  


AD (LW)  =  AL (DW)  +  LD (AW)  

AD2  =  AL2  +  LD (AW) 


AW  =  LD  +  2 (XL)  =  LD  +  2 (AL) (XL/AL)


ΔDIA  ≅  ΔEWD  =  ΔXLA  


AW  =  LD  +  2 (AL) (ID/IA)


AD2  -  AL2  =  LD2  +  2 (LD) (AL) (ID/IA) 
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AD2  -  AL2  =  LD2  +  2 (LD) (AL) (ID/IA)     

AD2/AI2   -   AL2/AI2  = 

LD2/AI2  +  2 (LD/AI) (AL/AI) (ID/IA)     


sin2 (θ + Δθ)  -  sin2 θ  = 

sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ) 


Δ(sin2 θ)  =  sin2 (θ + Δθ)  -  sin2 θ  =

sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ) 
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Limit     Δ(sin2 θ)  =

Δθ ⇒0     Δθ


Limit     sin2 Δθ + 2(sin Δ θ) (sin θ) cos (θ + Δθ)  =

Δθ ⇒0               Δθ


=  2 sin θ (cos θ)  =  sin 2θ


because:


Limit      sin2  Δθ   =   1  ;    Limit       sin  Δθ   =   1

Δθ ⇒0     Δθ                       Δθ ⇒0      Δθ
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Therefore, the meridian with the maximum 
combined effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV 
into SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  =  Sj  ⊥  SV 

to construct:
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Draw  Sb   so that:


SO2/SV2  =  Sj2/SV2  =  Sj/Sb


by making:


Sj/SV  =  SV/Sb


so that:


Sj2/SV2  =  Sj/Sb  =  SO2/SV2
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Similar triangles 
then show that:


SO2    =    aS

SV2           aV

132



Draw ad || SO


Choose a circle 
through S and V 
with a variable 
diameter SV' so that 
FZV lies on a 
common chord.
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The easiest way to do 
this involves a template 
of various circles, each 
with the location of their 
diameters already 
marked. 
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SV' is the meridian 
with the maximum 
combined effects 
of refraction 
because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Double-angle Method
We have already shown how to find angle θ, 

and angle α, so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α

An additional method, the double angle method, 
employs the fact that an arc subtends twice the angle 
at a circle’s center as it does at its circumference, and 
that the entirety of a circle subtends π radians any a 
point on its circumference. To illustrate:
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∠DNA  =  2∠DMA  ;  ∠DNC  =  2∠DMC

∠ANC = ∠DNA +/- ∠DNC = 2(∠DMA +/- ∠DMC) = 


2∠AMC  =  2∠AM'C
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~UK/UN = ~MH/MD = 2~UM/UE = 2~UM/2UN


~UK = ~UM

As K ⇒ N,  and  D ⇒ H:


2~KU/UN =  2∠MNU = ∠MNH   ⇒  π radians
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Given constant ΔOSV:

∠FSV  is constant.


and since:

∠FSV + (θ + α)  =  

π radians,


(θ + α)  is also 
constant.
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2(∠FSV) + 2 (θ + α) = 2π
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When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α

When aw || sX, we have divided the doubled angle 

2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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Images Seen Through 
Water

144



Object in water; image seen from air    
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If underwater object D is a 
perpendicular distance DB 
from the plane of the water 
surface in all radial 
directions, the image of 
object D along that 
perpendicular, when seen 
from directly above in air, is 
at Z, and BD/BZ = 4/3.

Isaac Barrow showed that the image of object D, 
when seen from Q obliquely along image ray MNQ, 
also lies above the object, but towards the observer 
relative to DB.
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Isaac Barrow 
described a way to 
find all oblique image 
rays MNQ through a 
designated point X, 
without knowing their 
points of refraction 
(N) along the surface 
of the water, or their 
intersections (M) with 
the perpendicular DB.
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He first drew a reference right triangle created by 
drawing BE = BZ as shown, which created the 
following constant ratios for air/water refraction:

BD/BZ = BD/BE = 4/3 
DB/DE = 4/√(16-9) = 1.5 
ED/EB = [√(16-9)]/3 = 0.87
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He showed that, given DB 
and the designated point 
X, if we draw the reference 
line segment PXW as 
shown, so that:

PW/PX = DB/DE = 1.5

then all image rays through 
X, (MXNQ) are found using:

DB/YN = ED/EB = 0.87

by drawing all possible 
reference lines of length 

YN = DB/0.87 through W, 
in order to locate the 
required positions of N.
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This means that for any given DB, there 
can be a maximum of two image rays 
through the designated point X, since only 
two reference line segments within the right 
angle ∠(Y)B(N), and equaling his calculated 
constant YN, can fit through point W. 
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Isaac Barrow showed 
that YN can be drawn 
as the shortest 
segment through W 
bounded by the right 
angle ∠(Y)B(N) when 
right triangles

ΔYBN, ΔNWT, and 
ΔTWY are all drawn 
as similar.
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Keeping P constant, as we vary length 
YN = DB/0.87 through W to find its 
minimum, the position of D must vary, 
while PW/PX (= DB/DE) = 1.5 can remain 
unchanged. Therefore, when the object 
is in water, Isaac Barrow’s analysis can 
find the image ray XMNQ for a 
designated clear image X, and an 
undesignated object D.
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Object in air; image seen from water    
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If object D is in air, and at a 
perpendicular distance DB 
from the surface of water in 
all radial directions, the image 
of the object along that 
perpendicular when seen 
from underwater is at Z, and 

BZ/BD = 4/3.

Isaac Barrow showed that the image of object D, 
when seen from Q obliquely along image ray MNQ, 
also lies above the object, but away from the 
observer relative to DB.
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Isaac Barrow 
described a way to find 
all oblique image rays 
MNQ through a point 
X, without knowing 
their points of 
refraction (N) along the 
surface of the water, or 
their intersections (M) 
with the perpendicular 
DB.
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He first drew a reference right triangle created by 
drawing BE = BD as shown, which created the 
following constant ratios for air/water refraction:

BZ/BD = BZ/BE = 4/3

ZB/ZE = 4/√(16-9) = 1.5 

EZ/EB = √(16-9)/3 = 0.87
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He showed that, given DB 
and the designated point 
X,  if we draw 

BY/BD = ZB/ZE = 1.5

then all image rays through 
X, (XMNQ) are found using:

XP/WN = MB/YN 

= EZ/EB = 0.87

by drawing all possible 
reference lines of length 

WN = XP/0.87 through Y, 
in order to locate the 
required positions of N.
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This means that for any given DB, there can 
be a maximum of two image rays through 
the designated point X, since only two 
reference line segments within the right 
angle ∠(W)P(N), and equaling his calculated 
constant WN, can fit through point Y.
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Isaac Barrow 
showed that WN 
can be drawn as the 
shortest segment 
through Y bounded 
by the right angle 
∠(W)P(N)

when right triangles 
ΔWPN, ΔNYT, and 
ΔWYT are all drawn 
as similar.
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Keeping P constant, as we vary length 
WN = XP/0.87 through Y to find its 
minimum, the position of X must vary, 
while BY = DB(1.5) can remain 
unchanged. Therefore, when the 
object is in air, Isaac Barrow’s analysis 
can find the image ray XMNQ for a 
designated object D, and an 
undesignated clear image X.
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Using conic sections
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The complex geometry supporting Isaac 
Barrow’s discussion of images seen 
through water will be explained in the 
context of refraction through a flat glass 
surface using conic sections. 

162



If we consider a circle with 
center B and diameter GBA 
with an “axis” infinitely long 
through GBA:

we can represent GBA along 
a circle of infinite diameter 
BY, and draw BG = BA.
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We will have drawn a finite 
circle where AJ + AF = AG 
along its diameter and “axis” 
GJBFA, if it is also true that:


PJ + PF = AG

If we call points J & F, (both of 
which in this case lie at B), the 
“focal points” of the finite circle, we 
can consider the shape of the finite 
circle with diameter GBA to equal 
its “eccentricity” = e = BF/BA = 0.
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If we draw:  0 < e = BF/BA < 1


we will have drawn a finite ellipse where AJ + AF = 
AG along its “major axis” GJBFA, if it is also true 
that PJ + PF = AG.
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As: becomes:

and rotates:
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If we draw:  0 < e = YF/YA > 1


we will have drawn a hyperbola where AJ - AF = AG 
along its “transverse axis” FAYGJ, if it is also true that 
PJ - PF = AG.
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When the infinitely large reference circle only 
rotates by π/2 radians in either direction, it no 
longer remains a circle equally divided by an 
infinitely long upward ray with its base on an 
axis, because reference points B and Y are 
both infinitely far. However, due to the halfway 
rotation of the reference circle, we can 
presume these curves resulting from clockwise 
and counter-clockwise rotation have an 
eccentricity halfway between that of an ellipse 
(e < 1), and that of an hyperbola (e > 1).
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These resulting curves are defined as a 
parabolas (e = 1), and like the circle (e = 
0), they represent a special case with a 
singular shape, or eccentricity.
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If we draw AF = GJ we will have drawn parabolas 
along their respective “axes” AF or GJ, if it is also 
true that PF = PJ. Since parabolas represent the 
eccentricity as an ellipse transforms into an 
hyperbola, (or visa versa), QA = QG. 
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Ellipse

2(BF)  =  MJ - MF


2(BM)  =  MJ + MF

2(BF)  =  MJ + MF


2(BM)  =  MJ - MF
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PJ2 - FP2  =  (MJ2 + MP2) - (MF2 + MP2)


(PJ + FP) (PJ - FP)  =  (MJ + MF) (MJ - MF)


AG (PJ - FP)  =  2(BM) 2(BF)


PJ - FP  =  [2(BM) 2(BF)]/2(BA)


eccentricity = e = BF/BA

                      

PJ - FP  =  2(BM)e
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Since:


FP + PJ  =  AG  =  2(BA)


(FP + PJ) + (PJ - FP)  =  2(PJ)  =  2(BA) + 2(BM)e


(FP + PJ) - (PJ - FP)  =  2(FP)  =  2(BA) - 2(BM)e


PJ = BA + (BM)e 

PF = BA - (BM)e
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FM  =  BM - BF
FM  =  BF - BM

FM2  =  BF2 + BM2 - 2(BF)BM


e = BF/BA = FB/FS


BA2  =  BF2 + BS2 

174



PF2  =  [BA - (BM)e]2


PF2  =  BA2 + (BM)2e2 - 2(BM)BF


PM2  =  PF2 - FM2


PM2  =  [BA2 + (BM)2e2 - 2(BM)BF]


              - [BF2 + BM2 - 2(BF)BM]


PM2  =  BS2 + BM2(e2 - 1)


PM2  =  BS2 - BM2(1-e2)


(PM)2BA2  =  (BS)2BA2 - BM2[BA2 - BF2]


(PM)2BA2  =  BS2[BA2 - BM2]


(MP/MI)2  =  (BS/BA)2


MP/MI  =  BS/BK
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Hyperbola
Draw the hyperbola arm ~AP by making: 

JZ = JX, and:

ZJ - AG  =  XP + FP

So:    XJ - XP  =  FP + AG   

and   PJ - FP  =  AG
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MJ - MF  =  2(YF)


MJ + MF  =  2(YM)

MJ - MF  =  2(YM)


MJ + MF  =  2(YF)
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PJ2 - FP2  =  (MP2 + MJ2) - (MP2 + MF2)


(PJ + FP) (PJ - FP)  =  (MJ + MF) (MJ - MF)


(PJ + FP)AG  =  2(YM) 2(YF)


PJ + PF  =  [2(YM) 2(YF)]/2(YA)


eccentricity = e = YF/YA


PJ + PF  =  2(YM)e
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Since:   PJ - PF  =  AG  =  2(YA)


(PJ + PF) + (PJ - PF)  =  2(PJ)  =  2(YM)e + 2(YA)


(PJ + PF) - (PJ - PF)  =  2(PF)  =  2(YM)e - 2(YA)


PJ  =  (YM)e + YA 

PF  =  (YM)e - YA
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FM2  =  YF2 + YM2 - 2(YF)YM


e  =  YF/YA  =  AS/AY


YF2  =  YA2 + YS2

FM  =  YF - YM FM  =  YM - YF
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PF2  =  [(YM)e - YA]2


PF2  =  YM2e2 + YA2 - 2(YM)YF


PM2  =  PF2 - FM2


PM2  =  [YM2e2 + YA2 - 2(YM)YF]


              - [YF2 + YM2 - 2(YF)YM]


PM2  =  YM2(e2 - 1) - YS2


PM2 YA2  =  YM2[YF2 - YA2] - YS2 YA2


PM2 YA2  =  YS2(YM2 - YA2)


(MP/MW)2  =  (YS/YA)2


MP/MW  =  YS/YA

ΔMWA ≅ ΔMGW

MW2  =  (MA)MG
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MP2/(MA)MG  =  (YS/YA)2  =  FL2/(FA)FG


(FA)FG  =  (YF - YA) (YF + YA)


(FA)FG  =  YF2 - YA2  =  YS2


FL/YS  =  YS/YA
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The following discussion will be 
presented in two columns for clarity. 
The left column represents the object 
in glass, and the right column 
represents the object in air.
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Given refraction along 
line GBNA, object D in 
glass, and image Z 
seen along BZD, a 
non-perpendicular 
image ray NM can be 
found using the 
reference semi-ellipse 
GZPA:

Given refraction along line 
BSN, object D in air, and 
image Z seen along BDZ, a 
non-perpendicular image ray 
NM can be found using the 
reference hyperbola arm ZP:

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

(with vertex 
designated 
as B instead 
of Y for 
consistency)
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because:

e = BF/BZ = ZS/ZB 

and:  MW/MP = BZ/BS

because: 

e = BF/BA = FB/FZ

and:  NQ/NP = BX/BZ

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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MW/MP = BZ/BS


MW2/MP2 = (MB2 - ZB2)/BN2


BZ2/BS2 = EZ2/EB2 

= (ZB2 - DB2)/DB2


(MB2 - ZB2)/BN2 

= (ZB2 - DB2)/DB2          


NQ/NP = BX/BZ


BZ2/NP2 = BA2/(BA2 - BN2)                  


(BZ2 - NP2)/NP2 = BN2/(BA2 - BN2)     


(BZ2 - NP2)/BN2 = NP2/(BA2 - BN2)


= NP2/NQ2 = BZ2/BG2  = BE2/BG2 


= ED2/BD2  = (BD2 - BZ2)/BD2


(BZ2 - NP2)/BN2 = (BD2 - BZ2)/BD2

|

|

|

|

|

|

|

|

|

|

|

|

|
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(MB2 - ZB2 + BN2)/BN2 

= BZ2/BD2             


(MN2 - BZ2)/BZ2 


= BN2/BD2                            


MN2/ZB2 = DN2/DB2                             


MN2/DN2 = BZ2/BD2


MN/DN = BZ/BD

(NP2 - BZ2)/BN2  = (BZ2 - BD2)/BD2            


(MN2 - BZ2)/BN2 = BZ2/BD2                             


(MN2 - BZ2)/BZ2 = BN2/BD2                             


MN2/BZ2 = (BN2 + BD2)/BD2                              


MN2/DN2 = BZ2/BD2


MN/DN = BZ/BD


|

|
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|
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|

|
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|

|

|

|

|

|

|
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ℝ  = BD/BZ 

ℝ  = N1D/N1M1

ℝ  = N2D/N2M2

ℝ  = BZ/BD

ℝ  = N1M1/N1D

ℝ  = N2M2/N2D

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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BM1 > BM2 

and N1M1 crosses 
N2M2 at X within the 
right angle ∠DBA.

BM2 > BM1 

and N1M1 crosses 
N2M2 at X outside the 
right angle ∠DBN2.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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ℝ  = DB/BZ = ND/NM


if:      BY/MB= DB/DE

then: DB/YN = ED/EB

because:

ℝ  = BZ/DB= NM/ND


if:      BY/DB= ZB/EZ

then: MB/YN= EZ/EB

because:

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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MB2 = MN2 - BN2


MB2 = MN2 - YN2 + BY2


BY2/(MN2 - YN2 + BY2)

= DB2/(DB2 - BZ2)

= DN2/(DN2 - MN2)


BY2/(YN2 - MN2) = DN2/MN2


BY2 = YN2 - BN2


BY2/DB2 = BZ2/(BZ2 - EB2)


BY2/(BY2 - DB2) = BZ2/DB2


BZ2/DB2 = MN2/DN2


BY2/MN2 = (BY2 - DB2)/DN2


(BY2 + MN2)/MN2

= (BY2 - DB2 + DN2)/DN2


|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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BY2 = YN2 - DN2 + DB2


(YN2 - DN2 + DB2)/(YN2 - MN2)

= DN2/MN2


(YN2 + DB2)/YN2 = DN2/MN2


DB2/YN2 = (DN2 - MN2)/MN2


= (DB2 - BZ2)/DB2 = ED2/EB2

(BY2 + MN2)/(BY2 + BN2)

= MN2/DN2


(MN2 - BN2)/NY2 

= (MN2 - DN2)/DN2


MB2/YN2 = (BZ2 - DB2)/DB2

= EZ2/EB2

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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When given point M, 
after calculating BY with 
known BM, (as well as 
known DB/DE); we can 
use known DB, (as well 
as known ED/EB), to 
calculate YN and use 
that as a radius about Y 
to find N:

When given point M, 
after calculating BY with 
known DB, (as well as 
known ZB/ZE); we can 
use known MB, (as well 
as known EZ/EB), to 
calculate YN and use 
that as a radius about Y 
to find N:

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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Since M must be known to 
find N, this gives no 
advantage over the 
previously described 
reference ellipse. However, 
it provides a way to find N 
on image ray MX(N) 
without knowing M.

Since M must be known to 
find N, this gives no 
advantage over the 
previously described 
reference hyperbola arm. 
However, it provides a way 
to find N on image ray 
XM(N) without knowing M.
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To find an image ray 
through a given point X, first 
calculate PW with known 
PX and DB/DE using:

PW/PX = (BY/MB) = DB/DE


Since DB and ED/EB are 
also known, find the length 
of YWN using:

DB/YN = ED/EB


We can then find (N) by 
inserting the calculated 
length YWN within the right 
angle ∠DBA through W.

To find an image ray through 
a given point X, first 
calculate BY with known DB 
and ZB/ZE using:

BY/DB = ZB/EZ  


Since PX and EZ/EB are 
also known, find the length 
of GYN using:

PX/GYN = (MB/YN) = EZ/EB


We can then find (N) by 
inserting the calculated 
length GYN within the right 
angle ∠XPb through Y.
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For any given calculated 
value of GN, a maximum 
of two line segments 

(G1N1 = G2N2) fit though 
Y within the right angle 
∠XPb.

For any given calculated 
value of YN, a maximum 
of two line segments 

(Y1N1 = Y2N2) fit though 
W within the right angle 
∠DBA.
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These two line 
segments are drawn 
to find both N1 and N2 
for the image rays 
through X. 

These two line 
segments are drawn 
to find both N1 and N2 
for the image rays 
through X. 
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The clear image of X 
occurs when YN through 
its specified point W is its 
minimum possible length, 
so that N1 lies at N2. 
Since both 

BY/MB = PW/XP 

and DB/YN are 
constants, YN can be 
varied while keeping the 
image location XP 
constant, but not the 
object location DB.
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The clear image of X 
occurs when GN through 
its specified point Y is its 
minimum possible 
length, so that N1 lies at 
N2. Since both 

MB/YN = XP/GN 

and BY/DB are 
constants, GN can be 
varied while keeping the 
object location DB 
constant, but not the 
image location XP.
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Expanding on the right side column representing the 
object in air, (where GN can be varied while keeping the 
object location DB constant, but not the image location 
XP), consider Y to be on a reference hyperbola defined by:

(LP)LJ = (BP)BY, and draw its opposite arm:
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We know LP/BY = BP/LJ. 

If we construct BN = LP, then BN/BY = BP/LJ. 

But SY/SG = BN/BY = BP/LJ 

and since SY = BP:

SG = LJ

SG + SP = LJ + HL 

PG = HJ


and since by 
construction BN = LP:

PN = LB = HY

ΔNPG = ΔYHJ 

GN = YJ
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The reference radius length YJ intersects the 
reference hyperbola at a maximum of two possible 
points J1 and J2. Both G1YN1 and G2YN2 can be 
drawn by constructing BN = LP for each point J. 


A clear image of object D occurs when N1 and N2 
overlap, or when the reference radius length YJ = 
GN intersects the reference hyperbola at a single 
point J. The required GN for this condition gives the 
required location of N, as well as the location of the 
clear image at X, (remember that PX varies with 
GN).
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