Geometrical Optics

Gregg Baldwin OD
2021

References:

Isaac Barrows Optical Lectures, 1667
Translated by H.C. Fay
Edited by A.G. Bennett
Publisher:
The Worshipful Company of Spectacle Makers London, England; 1987
ISBN \# 0-951-2217-0-1

Plane and Solid Geometry
G. A. Wentworth; 1899 revised edition

With thanks to William Brown, OD, PhD, who always taught the geometry first.
A). Using Circles and Triangles slide \#5
1). refraction along a line \#6
2). refraction along a circle \#34
3). refraction through a circle's center \#50
4). afocal angular magnification/minification \#59
5). retinal image size magnification \#63
6). axial magnification of distance correction \#67
7). axial magnification of near correction \#76
8). object angular subtense magnification \#82
9). stand magnifier magnification \#88
B). Using Conic Sections \#95
1). crossed cylinders \#96
2). refraction along a line \#135

A). Using Circles and Triangles

On a circle with diameter EU and center N :

1). refraction along a line

Two equal arcs \sim SE and $\sim J R$ can be shown to subtend equal angles by drawing any two parallel lines SD and JF. Since parallel lines intercept equal arcs across a circle,
$\sim S F=\sim J D$
$\sim S E+\sim S F=\sim J R+\sim J D$

$\sim E F=\sim R D$
ED || RF, and therefore:
$\angle S D E=\angle J F R$

Since conversely, equal angles along a circle subtend equal arcs, any angle along any circle can be defined in terms of its subtended arc and the circle's diameter.

For example: $\angle \mathrm{RFJ}=\sim \mathrm{RJ} / E \mathrm{EU}$

Triangles need only two equal angles to be the same shape, (or \cong).
Since equal arcs subtend equal angles along a circle:
$\Delta \mathrm{EJD} \cong \Delta \mathrm{DFI}$
FD/FI = JE/JD

10
$[(F D)(E I)] /[(F I)(E D)]$
$=[(\mathrm{JE})(\mathrm{ES})] /[(\mathrm{JD})(\mathrm{EJ})]$
= SE/SF
IE/IF = [(SE)(DE)]/[(SF)(DF)]
which describes an important property of any cyclic quadrilateral SEDF

LD || FE

```
DE/DF = LF/LE
IE/IF = (SE)(LF)/(SF)(LE)
```

FE/FI

$=\{(\mathrm{SE})(\mathrm{LF})+(\mathrm{SF})(\mathrm{LE})\} /(\mathrm{SF})(\mathrm{LE})$

$$
\begin{aligned}
& \angle \mathrm{KNU}=\angle \mathrm{MDH} \\
& \angle \mathrm{MDH}=\sim \mathrm{MH} / \mathrm{MD} \\
& =\sim \mathrm{MH} / \mathrm{UE} \\
& =2(\sim \mathrm{UM}) / \mathrm{UE} \\
& =2 \angle \mathrm{MEU} \\
& \\
& \angle \mathrm{KNU}=\sim \mathrm{UK} / \mathrm{UN} \\
& =2(\sim \mathrm{UM}) / 2(\mathrm{UN}) \\
& \sim \mathrm{UK}=\sim \mathrm{UM}
\end{aligned}
$$

LD || FE
$\sim E L=\sim F D$
$\Delta \mathrm{LSE} \cong \Delta \mathrm{FSI}$
$\mathrm{LS}=\{(\mathrm{FS})(\mathrm{LE})\} / \mathrm{FI}$
$(F E)(L S)=(S E)(L F)+(S F)(L E)$
which describes an important property of any cyclic quadrilateral SELF

$$
\begin{aligned}
& \text { Let } \mathrm{K} \Rightarrow \mathrm{~N} \text { and } \mathrm{D} \Rightarrow \mathrm{H}: \\
& \sim \mathrm{UK} / \mathrm{UN}=\sim \mathrm{MH} / \mathrm{MD} \\
& =\sim \mathrm{MH} / \mathrm{UE}=\angle \mathrm{MEH} \\
& \sim \mathrm{UK} / \mathrm{UN}=\angle \mathrm{MNU}
\end{aligned}
$$

$$
2(\sim \mathrm{UK}) / \mathrm{UN}=\angle \mathrm{MNH}=\pi
$$

NS/NC $=\mathrm{NC} /$ NB
NK/NC = CN/CK
$\Delta N S C=\Delta K W B=\Delta K N P$
$N C=K P$
$\triangle \mathrm{CKP}=\triangle \mathrm{BNA}=\triangle \mathrm{AOB}$
$N A=K P$
$N C=N A=O B$
$N C=K B=Y B$
$\mathbf{W K}=\mathrm{NS}=\mathbf{Y N}$

Keeping only:
NA = NC, and
$\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \Delta \mathrm{KWB}:$

As $\mathbf{N} \Rightarrow \mathrm{B}, \mathbf{W K} \Rightarrow \mathbf{Y N}$
because:
WK/OA \Rightarrow NK/NA $=$ NK/NC
$=\mathrm{OB} / \mathrm{OA}=\mathrm{WB} / \mathrm{WK}$

so that:
$\mathrm{WK} \Rightarrow \mathrm{OB} \Rightarrow \mathrm{YN}$

Keeping only:
NA = NC, and
$\Delta C N K \cong \triangle A O B \cong \Delta K W B:$
As $A \Rightarrow B, W K \Rightarrow Y N$

Therefore, we can presume that whenever A lies on KB of right triangle $\triangle K B N$, if $N A=N C$, and $\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \triangle \mathrm{KWB}$ then:
$\mathbf{W K}=\mathbf{Y N}$

which can be shown directly using the equations:
$(\mathrm{CK} / \mathrm{CN})^{2}=(\mathrm{AB} / \mathrm{AO})^{2}=(\mathrm{KB} / \mathrm{KW})^{2}=\left(\mathrm{CK}^{2}+\mathrm{AB}^{2}\right) /\left(\mathrm{CN}^{2}+\mathrm{AO}^{2}\right)$ since: $\mathrm{KB}^{2}=\mathrm{KN}^{2}-\mathrm{BN}^{2}=\mathrm{KN}^{2}-\left(\mathrm{NC}^{2}-\mathrm{AB}^{2}\right)=\mathrm{CK}^{2}+\mathrm{AB}^{2}$ then: $\mathrm{WK}^{2}=\mathrm{CN}^{2}+\mathrm{AO}^{2}$, which equals: $\mathrm{AN}^{2}+\mathrm{AO}^{2}=\mathrm{BA}^{2}+\mathrm{BN}^{2}+\mathrm{BO}^{2}-\mathrm{BA}^{2}=\mathrm{YN}^{2}$
$\mathrm{OB} / \mathrm{OA}=\mathrm{NK} / \mathrm{NA}=\mathrm{N}^{\prime} \mathrm{K}^{\prime} / \mathrm{N}^{\prime} \mathrm{A}$
$\mathrm{KW}=\mathrm{YN}$
$K^{\prime} W^{\prime}=Y N^{\prime}$
$K B / Y N=K^{\prime} B / Y N^{\prime}$

When EN is changed to become the smallest segment through Y included in the right angle EQN, E' lies at E, and N^{\prime} lies at N. At this point, X becomes the clear image Z of object A, seen along NK. Remember
 that QX varies with EN because $Q X / E N=K B / Y N$ $=\mathrm{KB} / \mathrm{KW}$, which is a constant.

NE || GL
TY || EL HI || NM
$\mathrm{HI}=\mathrm{NM}$
$\mathrm{NM}>\mathrm{NL}$
NL is the hypotenuse of right triangle NEL
$\mathrm{NL}>\mathrm{NE}$

$\mathrm{HI}>\mathrm{NE}$

NE || GL
TY || NL HI || EM
$\mathrm{HI}=\mathrm{EM}$
$\mathrm{EM}>\mathrm{EL}$

EL is the hypotenuse of right triangle ENL
$\mathrm{EL}>\mathrm{EN}$
$\mathrm{HI}>\mathrm{EN}$

In order to find Z given $\triangle Y B N$ and NK, we must find E using:
$\triangle Y B N$
$\cong \triangle \mathrm{NYT}$
$\cong \triangle \mathrm{NTE}$

In order to find Z given $\triangle \mathrm{YBQ}$, we must find EN so that:
right triangle
$\Delta T Y E=\triangle Q F N$
by drawing a circle concentric with $\odot \mathrm{Y}(\mathrm{F}) \mathrm{BQ}$
 around its center D containing arc \sim EN so that YF lies on chord EN.
$\Delta N o N K \cong \triangle K N A$
because:
$\sim N S=\sim N K$
Wavefront $\mathrm{G}_{0} \mathrm{~N}_{\mathrm{o}}$ refracts into wavefront GN along $\mathrm{G}_{\mathrm{o}} \mathrm{N}$, because it travels $\mathrm{G}_{\mathrm{o}} \mathrm{G}$ in the same time it travels NoN.

$\boldsymbol{R}=\mathrm{NN} /$ /GG。
$=\mathrm{NN} / \mathrm{NK}=\mathrm{NK} / \mathrm{NA}$

Not only does:
DY = DF, but also:
$E D=N D$ and therefore
$\Delta E D Y=\Delta N D F$
so $E Y=N F$
Since \triangle QFN is a right triangle, so is $\triangle T Y E$.

Once we have found
EN, we must also find
NK in order to find Z.

If $\boldsymbol{R}=\mathrm{OB} / \mathrm{OA}$,
and $\mathrm{KW}=\mathrm{YN}$:
$\boldsymbol{R}=\mathrm{NK} / \mathrm{NA}$

and Z is the clear image of object A refracted at N along BN

given $\triangle \mathrm{BAO}$:
use $\triangle \mathrm{BKW}$ or $\triangle \mathrm{QBY}$ to find $\triangle \mathrm{BNY}$ use $\triangle \mathrm{BNY}$ to find $\triangle \mathrm{BKW}$ or $\triangle \mathrm{QBY}$

$$
\begin{aligned}
& \triangle K N A \cong \triangle O C P \\
& \boldsymbol{R}=N K / N A \\
& =N^{\prime} K^{\prime} / N^{\prime A} \\
& =\mathrm{CO} / \mathrm{CP}
\end{aligned}
$$

2). refraction along a circle
$\mathrm{AG} / \mathrm{AN}^{\prime}=\mathrm{QG} / \mathrm{NN}^{\prime}$
(AG + AN')/2AN'

Real object A

$$
\begin{aligned}
& \triangle A N N^{\prime} \cong \triangle A Q G \\
& A G / A N^{\prime}=Q G / N N^{\prime} \\
& \left(A G+A N^{\prime}\right) / 2 A N^{\prime} \\
& =\left(Q G+N N^{\prime}\right) / 2 N N^{\prime}
\end{aligned}
$$

Virtual object A

can not be projected on a screen due to refraction at BN .
$\triangle \mathrm{XNN}, \cong \triangle \mathrm{XFE}$
$X E / X N{ }^{\prime}=E F / N N^{\prime}$
(XE + XN')/2XN'
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$

Real image at $(X=Z)$
 can be projected on a screen.

$$
\begin{aligned}
& \left(\mathrm{AG}+\mathrm{AN} \mathrm{~N}^{\prime}\right) / 2 \mathrm{AN}{ }^{\prime}=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime} \\
& \left(X E+X N^{\prime}\right) / 2 X N^{\prime}=\left(E F+N N^{\prime}\right) / 2 N N^{\prime} \\
& \left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) /\left(\mathrm{EF}+\mathrm{NN}{ }^{\prime}\right) \\
& =\left[\left(A G+A N^{\prime}\right) / 2 A N^{\prime}\right]\left[2 X N^{\prime} /\left(X E+X N^{\prime}\right)\right] \\
& \text { As } N^{\prime} \Rightarrow N, X \Rightarrow Z \text {, and: } \\
& \left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}^{\prime}\right) \\
& \Rightarrow\left(Q G+N N^{\prime}\right) /\left(E F+N N^{\prime}\right) \\
& \Rightarrow(\mathrm{AO} / \mathrm{AN})(\mathrm{ZN} / \mathrm{ZP})
\end{aligned}
$$

38
$\triangle \mathrm{XNN}$ ' $\cong \triangle \mathrm{XFE}$
$X E / X N^{\prime}=E F / N N^{\prime}$
(XE + XN')/2XN'
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$

Virtual image at ($\mathrm{X}=\mathrm{Z}$)
 can not be projected on a screen.

Also, when HD = QN'
and $\mathrm{RJ}=\mathrm{FN}{ }^{\prime}$
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$=2(\sim N D) / 2(\sim N J)=\sim N D / \sim N J$

As $N^{\prime} \Rightarrow N, X \Rightarrow Z$, and:
\sim DJ \Rightarrow line segment DJ, so:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$\Rightarrow \mathrm{ND} / \mathrm{NJ}$

Thus $\mathbf{R}=C O / C P$, and Z, (along both $N P$ and $C W$), is the clear image of A refracted along $\sim \mathrm{BN}$, when:

NT||CO, so:
AO/AN = CO/NT and:
NW||CP, so:
ZN/ZP = NW/CP and:
$\mathrm{NW} / \mathrm{NT}=\mathrm{NP} / \mathrm{NO}$

$(\Delta \mathrm{WNT} \cong \Delta \mathrm{PNO})$

The off-axis rays from any on-axis object A, (real or virtual), can not form a virtual on-axis image at Z because NW must be less than CP for Z to be virtual; but NW must also be greater than NT.

$$
\begin{aligned}
& \mathrm{DS} / \mathrm{JI}=\mathrm{CO} / \mathrm{CP} \\
& \mathrm{~J} / \mathrm{JN}=\mathrm{NP} / \mathrm{NC} \\
& \mathrm{DN} / \mathrm{DS}=\mathrm{NC} / \mathrm{NO} \\
& \mathrm{ND} / \mathrm{NJ}=(\mathrm{NP} / \mathrm{NO})(\mathrm{CO} / \mathrm{CP}) \\
& \\
& \text { As } \mathrm{N}^{\prime} \Rightarrow \mathrm{N}, \mathrm{X} \Rightarrow \mathrm{Z}, \text { and: } \\
& (\sim \mathrm{QG}+\sim \mathrm{NN},) /\left(\sim E \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right) \\
& \Rightarrow(\mathrm{NP} / \mathrm{NO})(\mathrm{CO} / \mathrm{CP})
\end{aligned}
$$

and therefore:
(AO/AN)(ZN/ZP) \Rightarrow (NP/NO)(CO/CP)

The off-axis rays from any real onaxis object A can not form a real on-axis image at Z because NW must be greater than (or equal to) CP for Z to be
 real; but NW must also be greater than NT.

The off-axis rays from a virtual on-axis object A can form a real on-axis image at Z, if NW is greater than CP, and WT lies along the axis.

The off-axis rays from any real on-axis object A can not form a real on-axis image at Z because NW must be greater than (or equal to, as
 shown here) CP for Z to be real; but NW must also be greater than NT.

Since:
$\angle \mathrm{NWT}=\angle \mathrm{NPO}=\angle \mathrm{NCO}$ and NW\|CP

WT lies along the axis when:
$\Delta N C O \cong \triangle Z C P$

When off-axis rays from a virtual on-axis object A form a real on-axis image Z, this occurs at all points N because:

$\Delta A C N \cong \Delta N C Z$ for all N

Keeping:

$\boldsymbol{R}=(\mathrm{CO} / \mathrm{CP})=$
(NO/NP)(AO/AN)(ZN/ZP)
constant as:
$\mathrm{N} \Rightarrow \mathrm{B}$:
$(\mathrm{BC} / \mathrm{BC})(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC}) \Rightarrow \boldsymbol{R}$

3). refraction through a circle's center

Refraction through a circle's center occurs when N lies at B , so that an object's ray from A to N lies along $A B C$, and an image ray lies along BCZ. The locations of the object A and image Z along the optic axis $B C$ are described by the equation:
$\boldsymbol{R}=\mathrm{CO} / \mathrm{CP}=(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC})$

If we draw A and Z along the optic axis BC as if it were a circle, and draw CDL so that $A L \| Z B$: $\triangle A C B \cong \triangle Z C D$, and: $(A C / A B)(Z B / Z C)=$ (ZC/ZD)(ZB/ZC) = (ZB/ZD)
so as the reference circle's radius $\Rightarrow \infty$
(ZB/ZD) $\Rightarrow \boldsymbol{R}$

53

HZ II CL
$Z B / Z D=H B / H C$
$\Delta H B Z \cong \Delta H J C$
when $\triangle H J C=\Delta I A B$:
$\mathrm{HC}=\mathrm{IB}$, and:
$\mathrm{IB} / \mathrm{IA}=\mathrm{HZ} / \mathrm{HB}$
This results in

Newton's Equation

as the reference circle's radius $\Rightarrow \infty$:
$(A I)(Z H)=(B I)(B H)$

$\Delta H C Z \cong \Delta H J B \cong \triangle B A Z$
$(\mathrm{HC} / \mathrm{HZ})=(\mathrm{BA} / \mathrm{BZ})$
$[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})]$

as the reference circle's radius $\Rightarrow \infty$:
$[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})] \Rightarrow \boldsymbol{R} /(\mathrm{HB})(\mathrm{BZ})$
and the resulting possible sums occur:
$H Z=H B+B Z$
$H B=H Z+B Z$
$B Z=H Z+H B$
which, when multiplied by the above three factors, form the conjugate foci equations.

The conjugate foci equations allow for the effect of axial refraction at a circle to be expressed as the term:
$(1 / \mathrm{HC})=(\boldsymbol{R} / \mathrm{HB})$
which is then additive with object vergence, defined as (1/BA); or image vergence, defined as (R/BZ).

4). afocal angular magnification/minification

Afocal Angular Magnification

When distance refraction at $\sim J D E$ is followed by refraction into distance at ~QGS
 along axis DGF as shown;
as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

Afocal Angular Minification

Or when distance refraction at \sim JDE is followed by refraction into distance at ~QGS along axis FDG, as shown; as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

5). retinal image size magnification

$\theta / a \Rightarrow(\sim L D / G D) /(\sim Y G / G D)$ as $P \Rightarrow F$
$\theta / a \Rightarrow(F D / F G)$ as $P \Rightarrow F$
so that afocal axial angular magnification/minification equals:

FD/FG

The top diagram illustrates a standard single-surfaced eye with a distant object A , and resulting retinal image size $\mathrm{H}_{0} \mathrm{Z}_{\mathrm{o}}$.

The bottom diagram illustrates any single-surfaced eye with a distant object A, and resulting retinal image size HZ.

6). axial magnification of distance correction

As $\mathrm{N} \Rightarrow \mathrm{B}$, the retinal image size magnification, $\mathrm{ZH} / \mathrm{Z}_{0} \mathrm{H}_{0}$, (relative to an arbitrary standard which factors out with subsequent comparisons), then approaches its axial value:

$$
\begin{aligned}
& \mathrm{ZQ} / \mathrm{Z}_{0} \mathrm{Q}_{0}=\mathrm{ZC} / \mathrm{Z}_{0} \mathrm{C}_{0}=\mathrm{HC} / \mathrm{H}_{0} \mathrm{C}_{0} \\
& =(\mathrm{BH} / \boldsymbol{R}) /(\mathrm{BH} / \boldsymbol{R})=\mathrm{BH} / \mathrm{BH} \mathrm{H}_{0}
\end{aligned}
$$

Once again
representing the optic axis $B C Z$ as a circle of infinite radius, the distant object A is
 focused by the curve of radius $B C$ towards the axial object Z, (which lies at the retina H when there is no distance refractive error).
additional refraction at G (at B) will create distance refractive error and a combined single refractive surface of radius BL .

69

The distance correction at D:

A distance correction must focus the distant object A towards the focal point F of the refractive error G , so that JF || BE, in order to move Z back to H .

Since the distance correction at D moves Z to H, rays leaving G after this correction must be afocal, resulting in afocal axial angular magnification equaling:

FD/FG (= FD/FB)

The (total) axial magnification of distance correction equals:
$\mathrm{M}=\left(\mathrm{BH} / \mathrm{BH}_{\mathrm{o}}\right)(\mathrm{FD} / \mathrm{FB})$

When the front surface of a spectacle lens that corrects distance refractive error is not flat, it is convex; and adds an additional "shape" factor, ($\mathrm{fq} / \mathrm{ft}$), to the afocal axial magnification of distance correction. (Point "t" lies at D, and FD/FB remains the "power" factor of the afocal axial magnification of distance correction).

7). axial magnification of near correction

There is no afocal axial angular magnification FD/FB when object A is at distance with an emetropic eye.
(The refractive error at
 G, (at B), is zero; and the focal point F of that refractive error lies at infinity).

As discussed, a distance myopic correction at D creates afocal axial angular minification:

FD/FG < 1
and this is relative to either the myopic eye with object A at its front focal point F, or the emetropic eye with object A at distance.

There is also no afocal axial angular magnification when object A is at the front focal point of an uncorrected myopic eye. (The system is not afocal, and involves only one
 refracting element).

Removing the myopic distance correction at D with a converging lens at D removes this afocal axial angular magnification with the factor:

FG/FD > 1
and this magnification of near correction is relative to the distance corrected myope.

If additional converging power is added to the converging lens so that the near focal point is in focus for an emetropic eye, which we then
 consider to be the reference eye, the magnification of near correction is still that which is removed with the factor:

8). object angular subtense magnification

When an object at a standard distance Fs is moved to F :

The object angular subtense magnification equals:

$\theta / \mathrm{a}=(\sim \mathrm{GFs} / \mathrm{BFs}) /(\sim \mathrm{EFs} / \mathrm{BFs})$
as $\mathrm{XFs} \Rightarrow 0$
the object angular subtense magnification approaches its axial value:
$\theta / \mathrm{a} \Rightarrow \mathrm{WFs} / \mathrm{XFs}=\mathrm{WFs} / \mathrm{YF}=\mathrm{BFs} / \mathrm{BF}$
which equals the axial
object angular subtense magnification.

The ratio describing axial object angular subtense magnification:

BFs/BF

when multiplied by the ratio describing near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD
produces a ratio which factors out the object's actual distance to the eye, confirming that when a converging lens is used with its front focal point at the object, so parallel light leaves the converging lens from the object, the image size is the same regardless of the object-to-eye distance.

9). stand magnifier magnification

When the
converging lens at D is split into two converging lenses:

∞

the ratio describing axial near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD
must be expressed as if all convergence occurred at a single unknown axial point De:

FB/FDe
with the same combined focus F :

De can be located using triangles.
$D_{2} G / D_{2} F=\operatorname{DeQ} / D e F$
$D_{2} G / D_{2} F_{1}=D_{1} J / D_{1} F_{1}$

$\mathrm{D}_{2} \mathrm{~F}(\mathrm{DeQ} / \mathrm{DeF})=\mathrm{D}_{2} \mathrm{~F}_{1}\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
DeQ/DeF $=\left(D_{2} F_{1} / D_{2} F\right)\left(D_{1} J / D_{1} F_{1}\right)$
$1 /$ DeF $=\left(D_{2} F_{1} / D_{2} F\right)\left(1 / D_{1} F_{1}\right)$
$\mathrm{FB} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{FB} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

Multiplying the axial object subtense magnification by the axial magnification of near correction (relative to the same eye without refractive error) produces:
$\mathrm{BFs} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{BFs} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

The converging lens D_{2} creates a virtual image F_{1} of an object at F. When considering a stand magnifier with lens D_{2}, constant stand height $D_{2} F$, and reading spectacle add or ocular accommodation D_{1}, the stand magnifier's (constant) enlargement of the object at F equals:

$$
\mathrm{E}=\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}
$$

The stand magnifier's axial magnification is its (constant) enlargement factor E, multiplied by what would be produced by D_{1} alone, if the object A were at F_{1}.

B). Using Conic Sections

It is useful to know the meridian of maximum axial refraction when combining the effects of two cylindrical refracting surfaces at an oblique axis. To do this, we need to first describe how their axial radii of curvature change with various meridional cross sections. Meridional cross sections of cylindrical surfaces are ellipses until they become parallel lines along the cylinder axis.

However, assuming a cylinder is parabolic rather than spherical, and that meridional cross sections are parabolic until they rotate into a single line parallel to the cylinder axis, allows for an approximation of the axial radii of curvature of these meridional cross sections. When these axial radii of curvature are expressed in forms that are additive in terms of refraction, we can then find the maximum sum of those expressions in terms of the meridional axis.

With any axial radius of curvature CB , and index of refraction \boldsymbol{R}, the axial image of a distant object lies at H when:

The axial refractive effects of compound refractive surfaces at B are additive only as their refractive "powers," which equal:

$$
\boldsymbol{R} / \mathrm{HB}=1 / \mathrm{HC}=[(\mathrm{HB}-\mathrm{HC}) / \mathrm{HC}] / \mathrm{CB}=(\boldsymbol{R}-1) / \mathrm{CB}
$$

All parabolas have the same shape, in the same way that all circles have the same shape. However, while circles have a single (internal) determining constant, the radius of curvature, parabolas have both a determining constant internal and external to the curve, and can be defined by either.

For example, a parabola's external determining constant equals BK when:

[2(SN) equals the sagitta corresponding to the sagittal depth SB].

102

In order to keep the determining geometrical relationships axial as $N \Rightarrow B$, they should also depend on line NP being parallel to the axis, and $X P$ being parallel to ZN .

We know X lies between Z and B, since parabolas flatten in their periphery.

Since as $N \Rightarrow B, Z \Rightarrow C$ by definition, and since $X P=Z N, P$ will remain external to the curve, and X can therefore not be its axial center of curvature, but must instead lie somewhere along CB.

In order to maintain ZN perpendicular to the parabola at N as $N \Rightarrow B$, the same geometrical relationships must exist that allow for that when N lies at B .

In other words:
$Y P=Y X$ and
$B b=B X$ so
$C B=2(X B)$

Axial refracting power equals $\quad(\boldsymbol{R}-1) / \mathrm{CB}$
Since for a parabola:
$\mathrm{SB} / \mathrm{SN}=\mathrm{SB} / \mathrm{TB}=\mathrm{TB} /[2(\mathrm{CB})]$
If $\quad \boldsymbol{R}=1.5$
The axial refracting power of a parabola equals:
$1 /[2(C B)]=S B / S^{2}=1 / B K$

When 2(SO) equals the minimum sagitta of an oblique parabolic cylinder, and when with equal sagittal depth SB, 2(SV) equals the minimum sagitta of a more highly curved parabolic cylinder with a horizontal axis:

109

As $\mathrm{O}^{\prime} \Rightarrow \mathrm{O}$
SV' increases more than SO' decreases

Keeping \triangle OSV constant, as we rotate circle SOG with variable diameter $\mathrm{SV}^{\prime} \mathrm{O}^{\prime}$ around point S :
$\angle O O^{\prime} G$ is constant because $\angle \mathrm{OSG}$ is constant,
so $\Delta \theta=-\Delta a$

110

As $\mathrm{V}^{\prime} \Rightarrow \mathrm{V}$
SO' increases more than SV' decreases

Since the sum ($\mathrm{SO}^{\prime}+\mathrm{SV}^{\prime}$) increases when either:
$\mathrm{O}^{\prime} \Rightarrow \mathrm{O}, \quad$ or $\mathrm{V}^{\prime} \Rightarrow \mathrm{V}$
there must be a specific SV'O' within $\triangle \mathrm{OSV}$ producing a minimum sum (SO' + SV'),
which must be near where small rotations produce only minimal changes in (SO' + SV').

Since as when one term of the sum (SO' + SV') increases, the other always decreases, this process can be taken to its limits to determine the meridian with minimum ($\mathrm{SO}^{\prime}+\mathrm{SV}^{\prime}$) using:

```
Limit \Delta(SO') = Limit \Delta (SV')
\Delta0=>0 \Deltaa=0
```

Therefore, the meridian with the maximum combined effects of this refraction can be found using:

Limit $\Delta \quad\left[\mathrm{SB} /\left(\mathrm{SO}^{\prime}\right)^{2}\right]=$ Limit $\Delta \quad\left[\mathrm{SB} /\left(\mathrm{SV}^{\prime}\right)^{2}\right]$
$\Delta \theta \Rightarrow 0 \quad \Delta a \Rightarrow 0$

To solve this equation, all variables must be expressed in terms of the variables approaching zero, so:

Limit $\Delta\left\{\left[\mathrm{SB}\left(\mathrm{SO} / \mathrm{SO}^{\prime}\right)^{2}\right] / \mathrm{SO}^{2}\right\}=$ Limit $\Delta\left\{\left[\mathrm{SB}\left(\mathrm{SV} / \mathrm{SV}^{\prime}\right)^{2}\right] / \mathrm{SV}^{2}\right\}$
$\Delta \theta \Rightarrow 0$ $\Delta a \Rightarrow 0$

Limit $\Delta\left\{\left[(\mathrm{SB}) \sin ^{2} \theta\right] / \mathrm{SO}^{2}\right\}=$ Limit $\Delta\left\{\left[(\mathrm{SB}) \sin ^{2} \mathrm{a}\right] / \mathrm{SV}^{2}\right\}$
$\Delta \theta \Rightarrow 0 \quad \Delta a \Rightarrow 0$
$\left(\mathrm{SB} / \mathrm{SO}^{2}\right)$ Limit $\left\{\Delta \sin ^{2} \theta\right\}=\left(\mathrm{SB} / \mathrm{SV}^{2}\right)$ Limit $\left\{\Delta \sin ^{2} \mathrm{a}\right\}$ $\Delta \theta \Rightarrow 0 \quad \Delta a \Rightarrow 0$

Solve for

Limit $\Delta \sin ^{2} \theta$
$\Delta \theta \Rightarrow 0$
on the reference circle:

$$
\begin{aligned}
& \mathrm{AW} \geq \mathrm{LD} \| \mathrm{AW} \\
& \angle \mathrm{ALD}=\sim \mathrm{AID} / \mathrm{AI} \\
& \geq \sim \mathrm{AI} / \mathrm{AI}=\pi
\end{aligned}
$$

Establish the necessary functions of θ in terms of line segments and chords.
$\left\{\right.$ Limit as $\Delta \theta \Rightarrow 0$ of $\left.\left[\Delta \sin ^{2} \theta\right]\right\} /\left\{\right.$ Limit as $\Delta a \Rightarrow 0$ of $\left.\left[\Delta \sin ^{2} a\right]\right\}$
$=\left[\mathrm{SO}^{2} / \mathrm{SV}^{2}\right]$

$$
\begin{aligned}
& \theta=\sim \frac{A L}{A I} \quad ; \quad \sin ^{2} \theta=\frac{A^{2}}{A I} \\
& \Delta \theta=\sim \frac{\mathrm{LD}}{\mathrm{Al}} ; \sin ^{2} \Delta \theta={\frac{\mathrm{LD}^{2}}{\mathrm{Al}}}^{2} \\
& (\theta+\Delta \theta)=\sim \frac{\sim}{\mathrm{ALD}} \quad ; \quad \sin ^{2}(\theta+\Delta \theta)=\frac{\mathrm{AD}^{2}}{\mathrm{AI}} \\
& \cos \theta=\frac{\mathrm{IL}}{\mathrm{Al}} \quad ; \quad \cos (\theta+\Delta \theta)=\frac{\mathrm{DI}}{\mathrm{Al}} \\
& \sin \theta=\frac{\mathrm{AL}}{\mathrm{Al}}=\frac{\mathrm{JL}}{\mathrm{IL}} \quad ; \quad \sin \theta \cos \theta=\frac{\mathrm{JL}}{\mathrm{IL}} \frac{\mathrm{IL}}{\mathrm{Al}} \\
& 2(\sin \theta \cos \theta)=\frac{M L}{A I}=\sin 2 \theta
\end{aligned}
$$

Then consider the following property of the cyclic quadrilateral circle $A L D W: A D(L W)=A L(D W)+L D(A W)$
$\Delta \mathrm{DIA} \cong \Delta \mathrm{EWD}=\Delta \mathrm{XLA} ; \mathrm{AD}^{2}=\mathrm{AL}^{2}+\mathrm{LD}(\mathrm{AW})$
$A W=L D+2(A L) \frac{L X}{L A} ; A W=L D+2(A L) \frac{I D}{I A}$
$A D^{2}-A L^{2}=L D^{2}+2(L D)(A L) \underline{I D}$
IA
$\mathrm{Al}\left[\sin ^{2}(\theta+\Delta \theta)-\sin ^{2} \theta\right]=$
$\mathrm{Al}\left[\sin ^{2} \Delta \theta\right]+2(\mathrm{LD})(\mathrm{AL}) \cos (\theta+\Delta \theta)=$
AI $\left[\sin ^{2} \Delta \theta\right]+2(\mathrm{LD})[(\mathrm{Al}) \sin \theta] \cos (\theta+\Delta \theta)$
Divide both sides by AI:
$\sin ^{2}(\theta+\Delta \theta)-\sin ^{2} \theta=\sin ^{2} \Delta \theta+2($ LD $) \sin \theta \cos (\theta+\Delta \theta)$
$\operatorname{Limit}_{\Delta \theta \Rightarrow 0} \frac{\Delta\left(\sin ^{2} \theta\right)}{\sim \mathrm{LD}}=2 \sin \theta(\cos \theta)=\sin 2 \theta$

Make SO =Sj \perp SV to construct:

$$
\frac{S j}{S V}=\frac{S V}{S b} \quad ; \quad \frac{S^{2}}{S V^{2}}=\frac{S j}{S b}=\frac{S O^{2}}{S V^{2}}
$$

Similar triangles show that:

```
SO2}=\underline{aS
SV2
    aV
```


Draw ad || SO

Choose a circle through S and V with a variable diameter SV' so that FZV lies on a common chord.

The easiest way to do this involves a template of various circles, each with the location of their diameters already marked.

SV^{\prime} is the meridian with the maximum combined effects of refraction because:

$$
\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}=\frac{\mathrm{FZ}}{\mathrm{ZV}}=\frac{\mathrm{FQ} / 2}{\mathrm{RV} / 2}=\frac{\mathrm{FQ}}{\mathrm{RV}}=\frac{\sin 2 \theta}{\sin 2 a}
$$

Double-angle Method:

Given constant $\triangle \mathrm{OSV}$:
$\angle F S V$ is constant
$\angle F S V+(\theta+a)=\pi$
$(\theta+a)$ Is constant
We have already shown how to find single angles $\theta+a$ so that:
$\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aV}}=\frac{\sin 2 \theta}{\sin 2 \mathrm{a}}$

If we draw diameter XaP so:
$\mathrm{aX}=\mathrm{aV}$, and $\angle \mathrm{SaP}=2(\theta+\mathrm{a})$

2). refraction along a line

$\frac{\mathrm{SO}^{2}}{\mathrm{SV}^{2}}=\frac{\mathrm{aS}}{\mathrm{aX}}=\frac{\mathrm{ah} / \mathrm{aX}}{\mathrm{ah} / \mathrm{aS}}=\frac{\sin 2 \theta}{\sin 2 a}$

When aw || sX, we have divided the doubled angle $2(\theta+a)=\angle S a P$
into $2 \theta=\angle \mathrm{WaP}$, and $2 \alpha=\angle \mathrm{WaS}$.

If we consider a circle with center B and diameter GBA with an "axis" infinitely long
 through GBA:

We can represent GBA along a circle of infinite diameter BY, and draw $B G=B A$. This infinitely large reference circle is equally divided along ray BY, with Y at infinity.

If we call points J \& F, (both of which in this case lie at B), the "focal points" of the finite circle, we can consider the shape of the finite circle with diameter GBA to equal its "eccentricity" $=e=B F / B A=0$.

We will have drawn a circle where $A J+A F=A G$ along its diameter GJBFA, if it is also true that:

$P J+P F=A G$

As:

becomes:

If we draw: $0<e=B F / B A<1$
we will have drawn a ellipse where AJ + AF = AG along its "major axis" GJBFA, if it is also true that $P J+P F=A G$.

If we draw: $0<\mathrm{e}=\mathrm{YF} / \mathrm{YA}>1$
we will have drawn a hyperbola where $\mathrm{AJ}-\mathrm{AF}=\mathrm{AG}$ along its "transverse axis" FAYGJ, if it is also true that $P J-P F=A G$.

Ellipse

```
2(BF) = MJ - MF
2(BM) = MJ +MF
```


$2(B F)=M J+M F$
$2(B M)=M J-M F$

Since:
$F P+P J=A G=2(B A)$
$(F P+P J)+(P J-F P)=2(P J)=2(B A)+2(B M) e$
$(F P+P J)-(P J-F P)=2(F P)=2(B A)-2(B M) \mathrm{e}$
$P J=B A+(B M) e$
$P F=B A-(B M) e$
$P J^{2}-F P^{2}=\left(M J^{2}+M P^{2}\right)-\left(M F^{2}+M P^{2}\right)$
$(P J+F P)(P J-F P)=(M J+M F)(M J-M F)$
$A G(P J-F P)=2(B M) 2(B F)$
$P J-F P=[2(B M) 2(B F)] / 2(B A)$
eccentricity $=e=B F / B A$
$P J-F P=2(B M) e$
$F M=B F-B M \quad F M=B M-B F$

$$
\begin{aligned}
& \mathrm{FM}^{2}=\mathrm{BF}^{2}+\mathrm{BM}^{2}-2(\mathrm{BF}) \mathrm{BM} \\
& \mathrm{e}=\mathrm{BF} / \mathrm{BA}=\mathrm{FB} / \mathrm{FS} \\
& \mathrm{BA}^{2}=\mathrm{BF}^{2}+\mathrm{BS}^{2}
\end{aligned}
$$

```
PF}\mp@subsup{}{}{2}=[BA-(BM)e\mp@subsup{]}{}{2
PF}\mp@subsup{}{}{2}=\mp@subsup{BA}{}{2}+(BM\mp@subsup{)}{}{2}\mp@subsup{\textrm{e}}{}{2}-2(BM)B
PM}\mp@subsup{}{}{2}=\mp@subsup{P}{}{\prime}\mp@subsup{F}{}{2}-\mp@subsup{F}{}{2}\mp@subsup{M}{}{2
PM}\mp@subsup{}{}{2}=[B\mp@subsup{A}{}{2}+(BM\mp@subsup{)}{}{2}\mp@subsup{e}{}{2}-2(BM)BF
    -[BF2}+\mp@subsup{BM}{}{2}-2(BF)BM
PM 2 = BS 2}+\mp@subsup{\textrm{BM}}{}{2}(\mp@subsup{\textrm{e}}{}{2}-1
PM }\mp@subsup{}{}{2}=\mp@subsup{BSS}{}{2}-\mp@subsup{BM}{2}{2}(1-\mp@subsup{e}{}{2}
(PM)}\mp@subsup{)}{}{2}\mp@subsup{\textrm{BA}}{}{2}=(\textrm{BS}\mp@subsup{)}{}{2}\mp@subsup{B}{}{2}\mp@subsup{A}{}{2}-\mp@subsup{\textrm{BM}}{}{2}[\mp@subsup{B}{A}{2}-\mp@subsup{B}{}{2}\mp@subsup{F}{}{2}
(PM)}\mp@subsup{}{}{2}\mp@subsup{B}{}{\prime}\mp@subsup{}{}{2}=\mp@subsup{B}{}{\prime}2[\mp@subsup{B}{A}{2}-\mp@subsup{B}{M}{2}
(MP/MI)}\mp@subsup{)}{}{2}=(\textrm{BS}/\textrm{BA}\mp@subsup{)}{}{2
MP/MI = BS/BK
\((P M)^{2} B^{2}=B S^{2}\left[B^{2}-B^{2}{ }^{2}\right]\)
\(M P / M I=B S / B K\)
```



```
\((\mathrm{MP} / \mathrm{MI})^{2}=(\mathrm{BS} / \mathrm{BA})^{2}\)
```

$$
M J-M F=2(Y F)
$$

$$
\mathrm{MJ}+\mathrm{MF}=2(\mathrm{YM})
$$

$M J-M F=2(Y M)$
$M J+M F=2(Y F)$

Hyperbola

Draw hyperbola arm AP:
Make: $Z J-A G=X P+F P$
So: $X J-X P=F P+A G$ and $\mathrm{PJ}-\mathrm{FP}=\mathrm{AG}$

146
$P J^{2}-F P^{2}=\left(M P^{2}+M J^{2}\right)-\left(M P^{2}+M F^{2}\right)$
$(P J+F P)(P J-F P)=(M J+M F)(M J-M F)$
$(P J+F P) A G=2(Y M) 2(Y F)$
$P J+P F=[2(Y M) 2(Y F)] / 2(Y A)$
eccentricity $=\mathrm{e}=\mathrm{YF} / \mathrm{YA}$
$P J+P F=2(Y M) e$

Since: $\mathrm{PJ}-\mathrm{PF}=\mathrm{AG}=2(\mathrm{YA})$
$(\mathrm{PJ}+\mathrm{PF})+(\mathrm{PJ}-\mathrm{PF})=2(\mathrm{PJ})=2(\mathrm{YM}) \mathrm{e}+2(\mathrm{YA})$
$(P J+P F)-(P J-P F)=2(P F)=2(Y M) e-2(Y A)$
$P \mathbf{P}=(\mathbf{Y M}) \mathbf{e}+\mathbf{Y A}$
$P F=(Y M) e-Y A$

$$
F M=Y F-Y M \quad F M=Y M-Y F
$$

$$
\begin{aligned}
& \mathrm{FM}^{2}=\mathrm{YF}^{2}+\mathrm{YM}^{2}-2(\mathrm{YF}) \mathrm{YM} \\
& \mathrm{e}=\mathrm{YF} / \mathrm{YA}=\mathrm{AS} / \mathrm{AY} \\
& \mathrm{YF}^{2}=\mathrm{YA}^{2}+\mathrm{YS}^{2}
\end{aligned}
$$

$P^{2}=[(Y M) \mathrm{e}-\mathrm{YA}]^{2}$
$P F^{2}=Y M^{2} e^{2}+Y A^{2}-2(Y M) Y F$
$\mathrm{PM}^{2}=\mathrm{PF}^{2}-\mathrm{FM}^{2}$
$P M^{2}=\left[\mathrm{YM}^{2} \mathrm{e}^{2}+\mathrm{YA}^{2}-2(\mathrm{YM}) \mathrm{YF}\right]$

- [$\left.\mathrm{YF}^{2}+\mathrm{YM}^{2}-2(\mathrm{YF}) \mathrm{YM}\right]$
$P M^{2}=Y^{2}\left(e^{2}-1\right)-Y S^{2}$
$\mathrm{PM}^{2} \mathrm{YA}^{2}=\mathrm{YM}^{2}\left[\mathrm{YF}^{2}-\mathrm{YA}^{2}\right]-\mathrm{YS}^{2} \mathrm{YA}^{2}$

$\mathrm{PM}^{2} \mathrm{YA}^{2}=\mathrm{YS}^{2}\left(\mathrm{YM}^{2}-\mathrm{YA}^{2}\right)$
$(\mathrm{MP} / \mathrm{MW})^{2}=(\mathrm{YS} / \mathrm{YA})^{2}$
MP/MW = YS/YA
$M W^{2}=(M A) M G$
$\mathrm{MP}^{2} /(\mathrm{MA}) \mathrm{MG}=(\mathrm{YS} / \mathrm{YA})^{2}=\mathrm{FL}^{2} /(\mathrm{FA}) \mathrm{FG}$
$(F A) F G=(Y F-Y A)(Y F+Y A)$
$(F A) F G=Y^{2}-Y^{2}{ }^{2}=\mathrm{YS}^{2}$
$F L / Y S=Y S / Y A$

The following discussion will be presented in two columns for clarity. The left column represents the object in glass, and the right side column represents the object in air.

Given refraction along line GBNA, object D in glass, and image Z seen along BZD, a non-perpendicular image ray NM can be found using the reference semi-ellipse GZPA:

Given refraction along line BSN, object D in air, and image Z seen along BDZ, a non-perpendicular image ray NM can be found using the reference hyperbola arm ZP:

(with vertex designated as B instead of Y for consistency)
because:
$\mathrm{e}=\mathrm{BF} / \mathrm{BA}=\mathrm{FB} / F Z$
and: NQ/NP = BX/BZ

because:
e = BF/BZ = ZS/ZB
and: $M W / M P=B Z / B S$


```
NQ/NP = BX/BZ
BZ2/NP2 = BA 2/(BA' }-\mp@subsup{\textrm{BN}}{}{2}
(BZ2 - NP2)/NP' }=\mp@subsup{\textrm{BN}}{}{2}/(B\mp@subsup{A}{}{2}-\mp@subsup{\textrm{BN}}{}{2}
(BZ2 - NP }\mp@subsup{}{}{2})/\mp@subsup{\textrm{BN}}{}{2}=N\mp@subsup{N}{}{2}/(\mp@subsup{\textrm{BA}}{}{2}-\mp@subsup{\textrm{BN}}{}{2}
= NP2/NQ }\mp@subsup{}{}{2}=\mp@subsup{\textrm{BZ}}{}{2}/\mp@subsup{\textrm{BG}}{}{2}=\mp@subsup{\textrm{BE}}{}{2/}\mp@subsup{\textrm{BG}}{}{2
= ED 2/BD' = (BD' - BZ'2)/BD}\mp@subsup{}{}{2
(BZ'2-NP}\mp@subsup{}{}{2})/\mp@subsup{B}{}{2}2=(B\mp@subsup{D}{}{2}-\mp@subsup{B}{}{2}2)/B\mp@subsup{D}{}{2
```

$M W / M P=B Z / B S$
$\mathrm{MW}^{2} / \mathrm{MP}^{2}=\left(\mathrm{MB}^{2}-\mathrm{ZB}^{2}\right) / \mathrm{BN}^{2}$
$\mathrm{BZ}^{2} / \mathrm{BS}^{2}=\mathrm{EZ}^{2} / \mathrm{EB}^{2}$
$=\left(Z^{2}-D^{2}\right) / D^{2}$
$\left(\mathrm{MB}^{2}-\mathrm{ZB}^{2}\right) / \mathrm{BN}^{2}$
$=\left(\mathrm{ZB}^{2}-\mathrm{DB}^{2}\right) / \mathrm{DB}^{2}$

$\begin{aligned} & \mathbb{R}=\mathrm{BD} / \mathrm{BZ} \\ & \mathbb{R}=\mathrm{N}_{1} \mathrm{D} / \mathrm{N}_{1} \mathrm{M}_{1} \\ & \mathbb{R}=\mathrm{N}_{2} \mathrm{D} / \mathrm{N}_{2} \mathrm{M}_{2} \end{aligned}$	$\begin{aligned} & \mathbb{R}=B Z / B D \\ & \mathbb{R}=N_{1} M_{1} / N_{1} D \\ & \mathbb{R}=N_{2} M_{2} / N_{2} D \end{aligned}$

$\mathrm{BM}_{1}>\mathrm{BM}_{2}$ and $\mathrm{N}_{1} \mathrm{M}_{1}$ crosses $\mathrm{N}_{2} \mathrm{M}_{2}$ at X within the right angle $\angle \mathrm{DBA}$.	$\mathrm{BM}_{2}>\mathrm{BM}_{1}$ and $\mathrm{N}_{1} \mathrm{M}_{1}$ crosses $\mathrm{N}_{2} \mathrm{M}_{2}$ at X outside the right angle $\angle \mathrm{DBN}_{2}$.

$\mathbb{R}=\mathrm{DB} / \mathrm{BZ}=\mathrm{ND} / \mathrm{NM}$	$\mathbb{R}=B Z / D B=N M / N D$
if: $\quad B Y / M B=D B / D E$ then: $\mathrm{DB} / \mathrm{YN}=\mathrm{ED} / E B$ because:	if: $\quad B Y / D B=Z B / E Z$ then: $M B / Y N=E Z / E B$ because:

$\mathrm{MB}^{2}=\mathrm{MN}^{2}-\mathrm{BN}^{2}$
$\mathrm{MB}^{2}=\mathrm{MN}^{2}-\mathrm{YN}^{2}+\mathrm{BY}^{2}$
$B Y^{2} /\left(\mathrm{MN}^{2}-\mathrm{YN}^{2}+\mathrm{BY}^{2}\right)$
$=\mathrm{DB}^{2} /\left(\mathrm{DB}^{2}-\mathrm{BZ}^{2}\right)$
$=\mathrm{DN}^{2} /\left(\mathrm{DN}^{2}-\mathrm{MN}^{2}\right)$
$\mathrm{BY}^{2} /\left(\mathrm{YN}^{2}-\mathrm{MN}^{2}\right)=\mathrm{DN}^{2} / \mathrm{MN}^{2}$
$B Y^{2}=\mathrm{YN}^{2}-\mathrm{BN}^{2}$

$$
\begin{aligned}
& \mathrm{BY}^{2} / \mathrm{DB}^{2}=\mathrm{BZ} \mathrm{Z}^{2}\left(\mathrm{BZ}^{2}-\mathrm{EB}^{2}\right) \\
& \mathrm{BY} \mathrm{Y}^{2} /\left(\mathrm{BY}^{2}-\mathrm{DB}^{2}\right)=\mathrm{BZ} 2 / \mathrm{DB}^{2}
\end{aligned}
$$

$$
\mathrm{BZ}^{2} / \mathrm{DB}^{2}=\mathrm{MN} 2 / \mathrm{DN}^{2}
$$

$$
\mathrm{BY} 2 / \mathrm{MN}^{2}=\left(\mathrm{BY}^{2}-\mathrm{DB} \mathrm{~B}^{2}\right) / \mathrm{DN}^{2}
$$

$\left(\mathrm{BY}^{2}+\mathrm{MN}^{2}\right) / \mathrm{MN}^{2}$

$$
=\left(\mathrm{BY}^{2}-\mathrm{DB}{ }^{2}+\mathrm{DN} \mathrm{D}^{2}\right) / \mathrm{DN}^{2}
$$

When given point M, after calculating BY with known BM, (as well as known DB/DE); we can use known DB, (as well as known ED/EB), to calculate YN and use that as a radius about Y to find N :

When given point M, after calculating BY with known DB, (as well as known ZB/ZE); we can use known MB, (as well as known EZ/EB), to calculate YN and use that as a radius about Y to find N :

$$
\begin{aligned}
& \mathrm{BY}^{2}=\mathrm{YN}^{2}-\mathrm{DN}^{2}+\mathrm{DB}^{2} \\
& \left(\mathrm{YN}^{2}-\mathrm{DN}^{2}+\mathrm{DB}^{2}\right) /\left(\mathrm{YN}^{2}-\mathrm{MN}^{2}\right) \\
& =\mathrm{DN}^{2} / \mathrm{MN}^{2} \\
& \left(\mathrm{YN}^{2}+\mathrm{DB}^{2}\right) / \mathrm{YN}^{2}=\mathrm{DN}^{2} / \mathrm{MN}^{2} \\
& \\
& \mathrm{DB}^{2} / \mathrm{YN}^{2}=\left(\mathrm{DN}^{2}-\mathrm{MN}^{2}\right) / \mathrm{MN}^{2} \\
& =\left(\mathrm{DB}^{2}-\mathrm{BZ}^{2}\right) / \mathrm{DB}^{2}=\mathrm{ED}^{2} / \mathrm{EB}^{2}
\end{aligned}
$$

$\left(\mathrm{BY}^{2}+\mathrm{MN}^{2}\right) /\left(\mathrm{BY}^{2}+\mathrm{BN}^{2}\right)$
$=\mathrm{MN}^{2} / \mathrm{DN}^{2}$
($\left.\mathrm{MN}^{2}-\mathrm{BN} \mathrm{N}^{2}\right) / \mathrm{NY}^{2}$
$=\left(\mathrm{MN}^{2}-\mathrm{DN}^{2}\right) / \mathrm{DN}^{2}$
$\mathrm{MB}^{2} / \mathrm{YN}^{2}=\left(\mathrm{BZ}^{2}-\mathrm{DB}^{2}\right) / \mathrm{DB}^{2}$
$=E Z^{2} / E B^{2}$

Since M must be known to find N, this gives no advantage over the previously described reference ellipse. However, it provides a way to find N on image ray $\mathrm{MX}(\mathrm{N})$ without knowing M.

Since M must be known to find N, this gives no advantage over the previously described reference hyperbola arm. However, it provides a way to find N on image ray $X M(N)$ without knowing M.

To find an image ray through a given point X , first calculate PW with known $P X$ and $D B / D E$ using: $\mathrm{PW} / \mathrm{PX}=(\mathrm{BY} / \mathrm{MB})=\mathrm{DB} / \mathrm{DE}$

Since DB and ED/EB are also known, find the length of YWN using:
DB/YN = ED/EB
We can then find (N) by inserting the calculated length YWN within the right angle $\angle \mathrm{DBA}$ through W.

To find an image ray through a given point X, first calculate BY with known DB and ZB/ZE using:
$B Y / D B=Z B / E Z$
Since PX and EZ/EB are also known, find the length of GYN using: PX/GYN $=(\mathrm{MB} / \mathrm{YN})=\mathrm{EZ} / \mathrm{EB}$

We can then find (N) by inserting the calculated length GYN within the right angle $\angle \mathrm{XPb}$ through Y .

These two line segments are drawn to find both N_{1} and N_{2} for the image rays through X.

These two line segments are drawn to find both N_{1} and N_{2} for the image rays through X

For any given calculated value of YN , a maximum of two line segments $\left(Y_{1} N_{1}=Y_{2} N_{2}\right)$ fit though W within the right angle $\angle D B A$

For any given calculated value of GN , a maximum of two line segments ($\mathrm{G}_{1} \mathrm{~N}_{1}=\mathrm{G}_{2} \mathrm{~N}_{2}$) fit though Y within the right angle $\angle X P b$.

The clear image of X occurs when YN through its specified point W is its minimum possible length, so that N_{1} lies at N_{2}.
Since both
$B Y / M B=P W / X P$
and $\mathrm{DB} / \mathrm{YN}$ are constants, YN can be varied while keeping the image location XP constant, but not the object location DB.

The clear image of X occurs when GN through its specified point Y is its minimum possible length, so that N_{1} lies at N_{2}. Since both $\mathrm{MB} / \mathrm{YN}=\mathrm{XP} / \mathrm{GN}$ and $B Y / D B$ are constants, GN can be varied while keeping the object location DB constant, but not the image location XP.

Expanding on the right side column representing the object in air, (where GN can be varied while keeping the object location DB constant, but not the image location $X P)$, consider Y to be on a reference hyperbola defined by: $(L P) L J=(B P) B Y$, and draw its opposite arm:

We know LP/BY = BP/LJ.
If we construct $B N=L P$, then $B N / B Y=B P / L J$.
But SY/SG $=B N / B Y=B P / L J$
and since $\mathrm{SY}=\mathrm{BP}$:
$S G=L J$
$S G+S P=L J+H L$
$P G=H J$
and since by construction $\mathrm{BN}=\mathrm{LP}$:
$\mathrm{PN}=\mathrm{LB}=\mathrm{HY}$
$\triangle \mathrm{NPG}=\triangle \mathrm{YHJ}$

The reference radius length YJ intersects the reference hyperbola at a maximum of two possible points J_{1} and J_{2}. Both $G_{1} Y N_{1}$ and $G_{2} Y N_{2}$ can be drawn by constructing $B N=L P$ for each point J.

A clear image of object D occurs when N_{1} and N_{2} overlap, or when the reference radius length $\mathrm{YJ}=$ GN intersects the reference hyperbola at a single point J. The required $G N$ for this condition gives the required location of N , as well as the location of the clear image at X , (remember that PX varies with GN).

