Axial Magnification

Gregg Baldwin, OD
2022

$2 \sim K U / U N=2 \angle \mathrm{MNU}=\angle \mathrm{MNH}$
As $\mathrm{K} \Rightarrow \mathrm{N}$ and $\mathrm{D} \Rightarrow \mathrm{H}, \quad 2 \sim \mathrm{KU} / \mathrm{UN} \Rightarrow \pi$
$\angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{CAB}=\sim \mathrm{CA} / \mathrm{BF}+\sim \mathrm{AB} / \mathrm{BF}+\sim \mathrm{BC} / \mathrm{BF}=\pi$

If two angles of two triangles are the same, their third angles are the same. They are consequently the same shape, (are \cong), with equal side ratios.

$\angle \mathrm{ADC}=2 \angle \mathrm{ABC}$
$\angle A D C=\angle F D C-\angle F D A$, or:
$\angle \mathrm{ADC}=\angle \mathrm{FDC}+\angle \mathrm{FDA}$
$\angle \mathrm{ADC}=2(\angle \mathrm{FBC}+/-\angle \mathrm{FBA})$

$\angle A D C=2 \angle A B C$
Therefore $\angle A B C$ can be defined as:
$\sim A C / B F$, or $1 / 2(\sim A C / D F)$.

2

$\sim U K / U N=\sim M H / M D=2 \sim U M / U E=2 \sim U M / 2 U N$
$\sim \mathrm{UK}=\sim \mathrm{UM}$

E

SD \| FJ
$\Delta E J D \cong \Delta D F I ; F D / F I=J E / J D$
$\Delta \mathrm{EJS} \cong \Delta \mathrm{EDI} ; \mathrm{El} / \mathrm{ED}=\mathrm{ES} / \mathrm{EJ}$ $[(F D)(E I)] /[(F I)(E D)]$
$=[(J E)(E S)] /[(J D)(E J)]=$ SE/SF

IE/IF = [(SE)(DE)]/[(SF)(DF)]

NS/NC = NC/NB NK/NC = CN/CK
$\Delta N S C=\Delta K W B=$ $\triangle \mathrm{KNP}$
$N C=K P$
$\triangle \mathrm{CKP}=\triangle \mathrm{BNA}=\triangle \mathrm{AOB}$
$N A=K P$
$N C=N A=O B$
$N C=K B=Y B$
$\mathrm{WK}=\mathrm{NS}=\mathrm{YN}$

LD \| FE ; DE/DF = LF/LE; IE/IF = (SE)(LF)/(SF)(LE) FE/FI $=\{(S E)($ LF $)+(S F)(L E)\} /(S F)(L E)$
LD $\|$ FE; $\sim E L=\sim$ FD
$\Delta L S E \cong \Delta \mathrm{FSI} ; \quad \mathrm{LS} / \mathrm{FS}=\mathrm{LE} / \mathrm{FI} ; \quad \mathrm{LS}=\{(\mathrm{FS})(\mathrm{LE})\} / \mathrm{FI}$
Ptolemy's Theorem:
$(\mathrm{FE})(\mathrm{LS})=(\mathrm{SE})(\mathrm{LF})+(\mathrm{SF})(\mathrm{LE})$

Keeping only:
$N A=N C$, and $\triangle C N K \cong \triangle A O B \cong \triangle K W B:$

As $N \Rightarrow B, W K \Rightarrow Y N$
because:
WK/OA \Rightarrow NK/NA
$=$ NK/NC
$=\mathrm{OB} / \mathrm{OA}$
$=W B / W K$
so that:

$$
\mathrm{WK} \Rightarrow \mathrm{OB} \Rightarrow \mathrm{YN}
$$

Therefore, whenever A lies on KB of right triangle $\triangle \mathrm{KBN}$; if $N A=N C$, and
$\Delta C N K \cong \triangle A O B \cong \triangle K W B$,
then $\mathrm{WK}=\mathrm{YN}$

which also can be shown directly, using the equations: $(C K / C N)^{2}=(A B / A O)^{2}=(K B / K W)^{2}=\left(\mathrm{CK}^{2}+\mathrm{AB}^{2}\right) /\left(\mathrm{CN}^{2}+\mathrm{AO}^{2}\right)$ since: $\mathrm{KB}^{2}=\mathrm{KN}^{2}-\mathrm{BN}^{2}=\mathrm{KN}^{2}-\left(\mathrm{NC}^{2}-\mathrm{AB}^{2}\right)=\mathrm{CK}^{2}+\mathrm{AB}^{2}$ then: $\mathrm{WK}^{2}=\mathrm{CN}^{2}+\mathrm{AO}^{2}$, which equals: $\mathrm{AN}^{2}+\mathrm{AO}^{2}=\mathrm{BA}^{2}+\mathrm{BN}^{2}+\mathrm{BO}^{2}-\mathrm{BA}^{2}=\mathrm{YN}^{2}$

When EN is changed to become the smallest segment through Y ,
bound by the right angle EQN:
E' lies at E, and N ' lies at N .

Also, QX varies with EN because:
QX/EN = KB/YN $=\mathrm{KB} / \mathrm{KW}$, which is a
 constant.

To specify EN as the shortest hypotenuse through Y:

NE || GL
TY || EL
HI || NM
$\mathrm{HI}=\mathrm{NM}>\mathrm{NL}$
NL is the hypotenuse of right triangle NEL, so:
$N L>N E$
$\mathrm{HI}>\mathrm{NE}$

13

Let $\mathrm{X}=\mathrm{Z}$ when EN is the shortest segment through Y included in right angle EQN.

In order to find Z given $\triangle Y B N$, we must find $E=E$ ' using:

$$
\Delta Y B N \cong \Delta N Y T \cong \Delta N T E
$$

But also:
NE || GL
TY || NL
HI || EM
$\mathrm{HI}=\mathrm{EM}>\mathrm{EL}$

EL is the hypotenuse of right triangle ENL, so:
$E L>E N$
$\mathrm{HI}>\mathrm{EN}$

In order to find Z given $\triangle Y B Q$, we must find $E N=E^{\prime} N^{\prime}$ by making $\triangle T Y E$ a right triangle.

Draw a concentric circle around \odot YBQ using its center at D , (the midpoint of hypotenuse YQ), containing an arc $\sim \mathrm{EN}$, so that YF lies on its chord EN. The arc intercepted by $\angle D E N$
 then equals that intercepted by $\angle \mathrm{DNE}$.
$\mathrm{WK}=\mathrm{YN}$
Given $\triangle B A O$:

use $\triangle \mathrm{BNY}$ to find $\triangle \mathrm{BKW}$ and $\triangle \mathrm{QBY}$,
use $\triangle Q B Y$ or $\triangle B K W$ to find $\triangle B N Y$.
$\angle D E Y=\angle D N F$
DY = DF ; DE = DN
$\Delta E D Y=\Delta N D F$
$E Y=N F$
Since \triangle QFN is a right triangle, so is $\triangle T Y E$.

18
$\Delta N o N K \cong \Delta K N A$
because:
$\sim N S=\sim N K$
across diameter $\mathrm{G}_{0} \mathrm{~N}$.
Wavefront $\mathrm{G}_{0} \mathrm{~N}_{0}$ refracts into wavefront GN along GoN, since it travels $\mathrm{G}_{\circ} \mathrm{G}_{\mathrm{in}}$ the same time it travels
 N o N .

$$
\mathbb{R}=\mathrm{NN}_{0} / \mathrm{GG}_{\circ}=\mathrm{NN} \mathrm{~N}_{0} / \mathrm{NK}=\mathrm{NK} / \mathrm{NA}
$$

Therefore, if $\mathbb{R}=\mathrm{OB} / \mathrm{OA}$, and $\mathrm{WK}=\mathrm{YN}$; then,
$\mathbb{R}=\mathrm{NK} / \mathrm{NA}$

and Z is the clear image of object A refracted at $\mathrm{N}\left(=\mathrm{N}^{\prime}\right)$, along BN , because the two possible refracted rays through Z coincide at N .

Real object A:
$\triangle A N N^{\prime} \cong \triangle A Q G$
AG/AN' = QG/NN'

$(A G+A N ') / 2 A N '$
$=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime}$

$\triangle \mathrm{KNA} \cong \triangle \mathrm{OCP}$
$\mathbb{R}=N K / N A$
$=N^{\prime} K^{\prime} / \mathrm{N}^{\prime} A$
= CO/CP

Virtual object A, which can not be projected on a screen due to refraction at BN :
$\triangle A N N^{\prime} \cong \triangle A Q G$

AG/AN' = QG/NN'
(AG + AN')/2AN'
$=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime}$

Real image at X , (will be defined as clear as $N^{\prime} \Rightarrow N$, and $X \Rightarrow Z$), can be projected on a screen:
$\triangle \mathrm{XNN}{ }^{\prime} \cong \triangle \mathrm{XFE}$
XE/XN' $=E F / N N^{\prime}$

$\left(X E+X N^{\prime}\right) / 2 X^{\prime}{ }^{\prime}$
$=\left(E F+N N^{\prime}\right) / 2 N^{\prime}{ }^{\prime}$

Virtual image at X, (will be defined as clear as $\mathrm{N}^{\prime} \Rightarrow \mathrm{N}$, and $\mathrm{X} \Rightarrow \mathrm{Z}$), can not be projected on a screen:
$\triangle X N N^{\prime} \cong \triangle X F E$
$X E / X N^{\prime}=E F / N N^{\prime}$

$\left(\mathrm{XE}+\mathrm{XN}{ }^{\prime}\right) / 2 \mathrm{XN}^{\prime}$
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$

Also, when HD = QN' and $\mathrm{RJ}=\mathrm{FN}$ '
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$=2(\sim N D) / 2(\sim N J)=\sim N D / \sim N J$

As $\mathrm{N}^{\prime} \Rightarrow \mathrm{N}, \mathrm{X} \Rightarrow \mathrm{Z}$, and:
$\sim \mathrm{DJ} \Rightarrow$ line segment DJ , so:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN} N^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$\Rightarrow \mathrm{ND} / \mathrm{NJ}$

$$
\begin{aligned}
& \mathrm{DS} / \mathrm{JI}=\mathrm{CO} / \mathrm{CP} \\
& \mathrm{~J} / \mathrm{JN}=\mathrm{NP} / \mathrm{NC} \\
& \mathrm{DN} / \mathrm{DS}=\mathrm{NC} / \mathrm{NO} \\
& \text { ND/NJ }=(\mathrm{NP} / \mathrm{NO})(\mathrm{CO} / \mathrm{CP}) \\
& \\
& \text { As } \mathrm{N}^{\prime} \Rightarrow \mathrm{N}, \mathrm{X} \Rightarrow \mathrm{Z}, \text { and: } \\
& \left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right) \\
& \Rightarrow(\mathrm{NP} / \mathrm{NO})(\mathrm{CO} / \mathrm{CP})
\end{aligned}
$$

and therefore:
(AO/AN)(ZN/ZP) \Rightarrow (NP/NO)(CO/CP)

29

The off-axis rays from any on-axis object A, (real or virtual), can not form a virtual on-axis image at Z because NW must be less than CP for Z to be virtual;
 but NW must also be greater than NT.

Thus $\mathbb{R}=C O / C P$, and Z, (along both NP and CW), is the clear image of A refracted along $\sim \mathrm{BN}$, when:

NT||CO, so:
AO/AN = CO/NT and:
NW||CP, so:
$Z N / Z P=N W / C P$
and:
$N W / N T=N P / N O$

$(\Delta \mathrm{WNT} \cong \triangle \mathrm{PNO})$

The off-axis rays from any real on-axis object A can not form a real on-axis image at Z because NW must
 be greater than (or equal to) CP for Z to be real; but NW must also be greater than NT.

The off-axis rays from a virtual on-axis object A can form a real on-axis image at Z, if NW is greater than CP, and WT lies along the axis.

33

When off-axis rays from a virtual on-axis object A form a real on-axis image Z, this occurs at all points N because:

$\triangle A C N \cong \triangle N C Z$ for all N, (since they share proportional sides around a common angle).

Since:
$\angle N W T=\angle N P O=\angle N C O$ and NW \| CP

WT lies along the axis when:
$\Delta N C O \cong \triangle Z C P$

This can also be demonstrated using similar right triangles: $\Delta S A N \cong C O N$, and $\triangle Y Z N \cong \triangle C P N$, so that: $(\mathrm{AO} / \mathrm{AN})(\mathrm{ZN} / \mathrm{ZP})=(\mathrm{SC} / \mathrm{SN})(\mathrm{YN} / \mathrm{YC})$.

Since: $\mathrm{CY} / \mathrm{CN}=\mathrm{CN} / \mathrm{CS}=(\mathrm{CY}+\mathrm{CN}) /(\mathrm{CN}+\mathrm{CS})=\mathrm{NY} / \mathrm{NS}$ $(S C / S N)=(N C / N Y)$, and:
$(A O / A N)(Z N / Z P)=C N / C Y$

But it is also true that:

(CO/CP)(NP/NO) = CN/CY, because:
$(\mathrm{CO} / \mathrm{CP})(\mathrm{NP} / \mathrm{NO})=(\mathrm{LY} / \mathrm{LN})(\mathrm{PN} / \mathrm{PC})=$
$=(\mathrm{QN} / \mathrm{QY})(\mathrm{PN} / \mathrm{PC})=(\mathrm{QN} / \mathrm{QY})(\mathrm{ZN} / \mathrm{ZY})=$
QN (ZN)/QY(ZY) which, by the property of cyclic
quadrilaterals discussed in slide \#5, equals CN/CY

${ }^{37}$

Refraction through a circle's center occurs when N lies at B , so that an object's ray from A to N lies along $A B C$, and an image ray lies along BCZ. The locations of the object A and image Z along the optic axis $B C$ are described by the equation:
$\mathbb{R}=\mathrm{CO} / \mathrm{CP}=(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC})$

Keeping:
$\mathbb{R}=(\mathrm{CO} / \mathrm{CP})=(\mathrm{NO} / \mathrm{NP})(\mathrm{AO} / \mathrm{AN})(\mathrm{ZN} / \mathrm{ZP})$
constant, as $\mathrm{N} \Rightarrow \mathrm{B}$:
$(\mathrm{BC} / \mathrm{BC})(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC}) \Rightarrow \mathbb{R}$

If we draw A and Z along the optic axis BC as if it were a circle, and draw CDL so that AL || ZB: $\triangle A C B \cong \triangle Z C D$, and: $(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC})=$ (ZC/ZD)(ZB/ZC) = (ZB/ZD)
so as the reference circle's radius $\Rightarrow \infty$,
$(\mathrm{ZB} / \mathrm{ZD}) \Rightarrow \mathbb{R}$

AL II ZB
$A Z=B L$
$\sim A Z=\sim B L$
HZ II CL
ZC = LJ
$\sim \mathrm{ZC}=\sim \mathrm{LJ}$
\sim AZC $=\sim$ BLJ
AJ II CB

$$
\begin{aligned}
& \sim \mathrm{AZ}+\sim \mathrm{ZC}=\sim \mathrm{AZC} \\
& \sim \mathrm{BL}+\sim \mathrm{LJ}=\sim \mathrm{BLJ}
\end{aligned}
$$

41
$\Delta H C Z \cong \triangle H J B \cong \triangle B A Z$
$(\mathrm{HC} / \mathrm{HZ})=(\mathrm{BA} / \mathrm{BZ})$
$[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})]$

43

HZ II CL
$Z B / Z D=H B / H C$
$\triangle H B Z \cong \triangle H J C$
when $\triangle H J C=\triangle I A B$:

$H C=I B$, and:
$\mathrm{IB} / \mathrm{IA}=\mathrm{HZ} / \mathrm{HB}$
This results in Newton's Equation: as the reference circle radius $\Rightarrow \infty$, $(\mathrm{Al})(\mathrm{ZH})=(\mathrm{BI})(\mathrm{BH})$

as the reference circle's radius $\Rightarrow \infty$, $[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})] \Rightarrow \mathbb{R} /(\mathrm{HB})(\mathrm{BZ})$ and the resulting possible sums occur:
$H Z=H B+B Z$
$H B=H Z+B Z$
$B Z=H Z+H B$
which, when multiplied by the above three factors, form the conjugate foci equations.

The conjugate foci equations allow for the effect of axial refraction at a circle to be expressed as the term:

$$
(1 / \mathrm{HC})=(\mathbb{R} / \mathrm{HB})
$$

which is then additive with object vergence, defined as (1/BA); or image vergence, defined as ($\mathbb{R} / B Z$).

When distance
refraction at $\sim J D E$ is followed by refraction into distance at ~QGS along axis DGF as shown;
as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

Or when distance refraction at $\sim J D E$ is followed by refraction into distance at ~QGS along axis FDG, as shown; as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:

$\theta / a \Rightarrow(\sim L D / G D) /(\sim Y G / G D)$ as $P \Rightarrow F$ $\theta / a \Rightarrow$ (FD/FG) as $P \Rightarrow F$
so that afocal axial angular magnification/minification equals:

FD/FG

The top diagram illustrates a standard single-surfaced eye with a distant object A, and resulting retinal image size $\mathrm{H}_{\mathrm{o}} \mathrm{Z}_{\mathrm{o}}$.

49

As $N \Rightarrow B$, the retinal image size magnification, $\mathrm{ZH} / \mathrm{Z}_{0} \mathrm{H}_{\mathrm{o}}$, (relative to an arbitrary standard which factors out with subsequent comparisons), then approaches its axial value:
$Z Q / Z_{\circ} Q_{\circ}=Z C / Z_{\circ} C_{\circ}=H C / H_{\circ} C_{\circ}$
$=(\mathrm{BH} / \mathbb{R}) /\left(\mathrm{BH}_{0} / \mathbb{R}\right)=\mathrm{BH} / \mathrm{BH}_{0}$

The bottom diagram illustrates any single-surfaced eye with a distant object A, and resulting retinal image size HZ.

Once again representing the optic axis BCZ as a circle of infinite radius, the distant object A at ∞ is focused by the radius $B C$ of the presumed single refracting surface towards the axial image Z, which lies at the retina H when there is no distance refractive error. (BHo represents the standard axial length, and $B C_{0}$ represents
 the standard single refracting curvature radius).

As pictured in the next three slides, additional refraction G (at B) will create an "ametropic" eye, with "distance refractive error," and a combination curvature effect with total radius $B L$ instead of $B C$, moving image Z from the retina at H to its erroneous location at E. The "front focal point" of the "ametropic" eye is defined as point I. A "distance correction" must focus the distant object towards F, so that JF || BL, in order to move image Z back to the retina H.

53

The distance correction at D:

When the front surface of a spectacle lens that corrects distance refractive error is not flat, it is convex; and adds an additional "shape" factor, $(\mathrm{fq} / \mathrm{ft})$, to the afocal axial magnification of distance correction. (Point "t" lies at D, and FD/FB remains the "power" factor of the afocal axial magnification of distance correction).

Since the distance correction D moves image Z from E to retina H, rays leaving the refractive error G (at B) after this correction is in place must be afocal. This results in afocal axial angular magnification equaling:

FD/FG (= FD/FB)
Therefore, the total axial magnification of distance correction equals:
$\mathrm{M}=\left(\mathrm{BH} / \mathrm{BH}_{0}\right)(\mathrm{FD} / \mathrm{FB})$

58
"Axial Ametropia" occurs when E is at H_{0}, (and point I is therefore at l_{0}, the front focal point of the standard eye). The distance refractive error is then completely due to an axial length BZ, (or BH), that is not standard.
$\Delta \mathrm{H}_{0} \mathrm{BH}=\Delta \mathrm{EBH} \cong \Delta \mathrm{EJL}=\Delta \mathrm{l}_{0} \mathrm{FB}$
$\left(\mathrm{BH} / \mathrm{BH}_{0}\right)=\left(\mathrm{FB} / \mathrm{Fl}_{0}\right)$
$\mathrm{M}=\left(\mathrm{FB} / \mathrm{Fl}_{\mathrm{o}}\right)(\mathrm{FD} / \mathrm{FB})=\mathrm{FD} / \mathrm{Fl}_{\mathrm{o}}$
Therefore, in the case of axial ametropia, there is no total axial magnification of distance correction if the correction D lies at l .
"Refractive Ametropia" occurs when the retina H is at at H_{0}. The distance refractive error at G moving image Z to E is then completely due to a refracting radius BL that is not the standard BC 。

When the distance correction D lies at B:
$\mathrm{M}=\left(\mathrm{BH} / \mathrm{BH} \mathrm{H}_{\mathrm{o}}\right)(\mathrm{FD} / \mathrm{FB})=1$

There is no afocal axial angular magnification of distance correction with a distant object "A," and an emetropic eye whose refractive
 error at $G($ at $B)$ is by definition zero, (with its focal point F at infinity).

There is also no afocal axial angular magnification when object A is at the front focal point F of an uncorrected ametropic eye as shown, since this "myopic" system is not
 afocal, and involves only one refracting element G .

A distance myopic correction at D creates afocal axial angular minification:

FD/FG < 1
∞

and this is relative to either the myopic eye with object A at its front focal point F, or the emetropic eye with object A at distance.

Removing the myopic distance correction at D with a converging lens at D removes this afocal axial angular magnification with the factor:

FG/FD > 1
and this magnification of near correction is relative to the distance corrected myope.

65

When an object at a standard distance Fs is moved to F :

If additional converging power is added to the converging lens so that the near focal point is in focus for an emetropic eye, which we then consider to be the reference eye, the magnification of near correction is still that

$$
\text { FG/FD > } 1
$$ factor:

The object angular subtense magnification equals:

$\theta / \mathrm{a}=(\sim \mathrm{GFs} / \mathrm{BFs}) /(\sim \mathrm{EFs} / \mathrm{BFs})$
as $\mathrm{XFs} \Rightarrow 0$
the object angular subtense magnification approaches its axial value:
$\theta / \mathrm{a} \Rightarrow \mathrm{WFs} / \mathrm{XFs}=\mathrm{WFs} / \mathrm{YF}=\mathrm{BFs} / \mathrm{BF}$
which equals the axial
object angular subtense magnification.

The ratio describing axial object angular subtense magnification:

$\mathrm{BFs} / \mathrm{BF}$

when multiplied by the ratio describing near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD

70

When the converging lens at D is split into two converging lenses:

with the same combined focus F :

De can be located using triangles.
$\mathrm{D}_{2} \mathrm{G} / \mathrm{D}_{2} \mathrm{~F}=\mathrm{DeQ} / \mathrm{DeF}$
$\mathrm{D}_{2} \mathrm{G} / \mathrm{D}_{2} \mathrm{~F}_{1}=\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}$

$\mathrm{D}_{2} \mathrm{~F}(\mathrm{DeQ} / \mathrm{DeF})=\mathrm{D}_{2} \mathrm{~F}_{1}\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
DeQ/DeF $=\left(D_{2} F_{1} / D_{2} F\right)\left(D_{1} J / D_{1} F_{1}\right)$
$1 / \mathrm{DeF}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(1 / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
$\mathrm{FB} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{FB} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
the ratio describing axial near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD

must be expressed as if all convergence occurred at a single unknown axial point De:

FB/FDe

Multiplying the axial object subtense magnification by the axial magnification of near correction (relative to the same eye without refractive error) produces:
$\mathrm{BFs} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{BFs} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

The converging lens D_{2} creates a virtual image F_{1} of an object at F. When considering a stand magnifier with lens D_{2}, constant stand height $\mathrm{D}_{2} \mathrm{~F}$, and reading spectacle add or ocular accommodation D_{1}, the stand magnifier's (constant) enlargement of the object at F equals:

$$
\mathrm{E}=\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}
$$

The stand magnifier's axial magnification is its (constant) enlargement factor E, multiplied by what would be produced by D_{1} alone, if the object A were at F_{1}.

