X <ADC =2 ,.ABC
¢
Axial Magnification F 2
c
<ADC = 2FDC - 2FDA, or: ‘
2.ADC = ,FDC + ~FDA A
Gregg Baldwin, OD 2ADC =2(.FBC +/- 2FBA) F
2022 +ADC =2 .ABC 8
Therefore ~ABC can be defined as:
~AC/BF, or 1/2(~AC/DF).
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2~KU/UN =2 2MNU = 2MNH
AsK=Nand D =H, 2~KU/UN = 1

+<ABC + «BCA + 2CAB = ~CA/BF + ~AB/BF + ~BC/BF =1t

If two angles of two triangles are the same, their third angles
are the same. They are consequently the same shape,
(are =), with equal side ratios.

3

~UK/UN = ~MH/MD = 2~UM/UE = 2~UM/2UN

~UK = ~UM
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SD || FJ s b D N
AEJD = ADFI; FD/FI = JE/JD £
AEJS = AEDI; EI/ED = ES/EJ LD || FE ; DE/DF = LF/LE; IE/IF = (SE)(LF)/(SF)(LE)
%7 FE/FI = {(SE)(LF) + (SF)(LE)}/(SF)(LE)
 UBIESIUDNEY] - SEISF > IR =
- - ALSE = AFSI; LS/FS = LE/FI; LS = {(FS)(LE)}/FI
_ Ptolemy’s Theorem:
IE/IF = [(SE)(DE))/I(SF)(DF)] (FE)(LS) = (SE)(LF) + (SF)(LE)
NS/NC = NC/NB N Keeping only:
NK/NC = CN/CK /% NA = NC, and ACNK = AAOB = AKWB:
o
ANSC = AKWB = v ]
] As N =B, WK = YN
AKNP T A AN
NC = KP p because:
= WK/OA = NK/NA
— _ N
ﬁcA:riPK_P ABNA = AAOB _ NK/NC
= <b = OB/OA
NC = NA = OB = WB/WK
NC =KB=YB so that:

WK =NS =YN

WK = OB = YN




Keeping only:
NA = NC, and ACNK = AAOB = AKWB:

Therefore,
whenever A lies on KB of

right triangle AKBN,;
if NA = NC, and .
ACNK = AAOB = AKWB, oL / <
then WK = YN N jﬂfj

¢

which also can be shown directly, using the equations:
(CK/CN)2 = (AB/AO)2 = (KB/KW)2 = (CK2 + AB2)/(CN2 + AO?)
since: KB2= KN2 - BN2 = KN2 - (NC2 - AB?) = CK2 + AB?
then: WK2 = CN2 + AO2, which equals:

AN2 + AO2= BAZ + BN2 + BO? - BA2 = YN2
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As A=K, WK = YN I As A= B, WK= YN
|
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\ QX/EN = KB/YN

= K’'B/YN’ = QX/E’N’
OB/OA = NK/NA = N'’K’/N’A
EN =E'N’
KW =YN
K'W’ = YN’ Only one N’K’X
exists for NKX since
only one E’N’ exists

equal to EN.

KB/YN = K’'B/YN’

When EN is changed to become the smallest
segment through Y,
bound by the right angle EQN:

E’ lies at E, and

N’ lies at N. £ g Q

[ X
Also, QX varies with 3 B Ak .
EN because: 2
QX/EN = KB/YN |
= KB/KW, which is a r
constant.




To specify EN as the shortest hypotenuse

through Y:

NE || GL
TY || EL
HI || NM
HI = NM > NL

NL is the hypotenuse of
right triangle NEL, so:

NL > NE
HI > NE

E
But also: H\L
NE || GL ; G-
TY || NL I
HI || EM - N
HI = EM > EL N

EL is the hypotenuse of right triangle ENL, so:

EL > EN
HI > EN
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Let X=Z when EN is
the shortest segment
through Y included in
right angle EQN.

In order to find Z
given AYBN, we must
find E = E’ using:

AYBN = ANYT =

T
2
3y

7

\{ \\\\\ 7
F
oy

In order to find Z given AYBQ, we must find
EN = E’N’ by making ATYE a right triangle.

16




Draw a concentric
circle around ©YBQ

using its center at D,
(the midpoint of
hypotenuse YQ),
containing an arc ~EN,
so that YF lies on its
chord EN. The arc
intercepted by 2DEN

then equals that
intercepted by ~DNE.

+«DEY = 2DNF

DY = DF : DE = DN /
AEDY = ANDF EL_

EY = NF

Since AQFN is a right T h ¥
triangle, so is ATYE.
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WK =YN

Given ABAO:

use ABNY to find ABKW and AQBY,

o O

X

use AQBY or ABKW to find ABNY.

ANONK = AKNA
because:

~NS = ~NK

across diameter GoN.

Wavefront GoNo refracts
into wavefront GN along
GoN, since it travels GoG in
the same time it travels
NoN.

R = NNo/GGo = NNo/NK = NK/NA

20




Therefore, if ¢
R = OB/OA,

and WK = YN;

then,

R = NK/NA

and Z is the clear image of object A
refracted at N (= N’), along BN, because
the two possible refracted rays through Z

coincide at N.
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AKNA = AOCP
R = NK/NA

= N'K’/N’A

= CO/CP
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Real object A:

AANN’ = AAQG
AG/AN’ = QG/NN’

(AG + AN’)/2AN’
= (QG + NN’)/2NN’
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Virtual object A,
which can not be
projected on a
screen due to
refraction at BN:

AANN’ = AAQG
AG/AN’ = QG/NN’

(AG + AN’)/2AN’
= (QG + NN)/2NN’

24




Real image at X,
(will be defined as clear
asN’ = N,and X = 2),

can be projected on a
screen:

AXNN’ = AXFE 3 A
XE/XN’ = EF/NN’ i ¥

(XE + XN’)/2XN’
= (EF + NN’)/2NN’

25

Virtual image at X,
(will be defined as clear
as N’ = N,and X = 2),

can not be projected on
a screen:

AXNN’ = AXFE
XE/XN’ = EF/NN’
(XE + XN’)/2XN’

= (EF + NN)/2NN’
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(AG + AN’)/2AN’ = (QG + NN’)/2NN’
(XE + XN')/2XN’ = (EF + NN’)/2NN’

(QG + NN)/(EF + NN’)
= [(AG + AN’)/2AN’][2XN’/(XE + XN)]

As N =N, X=/Z, and:

(~QG + ~NN’)/(~EF + ~NN’)
= (QG + NN’)/(EF + NN’)

= (AO/AN)(ZN/ZP)
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Also, when HD = QN’
and RJ = FN’

(~QG + ~NN)/(~EF + ~NN’)
= 2(~ND)/2(~NJ) = ~ND/~NJ

As N =N, X=7, and:

~DJ = line segment DJ, so:
(~QG + ~NN’)/(~EF + ~NN’)

= ND/NJ

28




DS/JI = CO/CP

JI/ZUN = NP/NC

DN/DS = NC/NO

ND/NJ = (NP/NO)(CO/CP)

As N =N, X=7, and:

(~QG + ~NN)/(~EF + ~NN’)
= (NP/NO)(CO/CP)

and therefore:
(AO/AN)(ZN/ZP) = (NP/NO)(CO/CP)
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Thus R = CO/CP, and Z, (along both NP and CW),
is the clear image of A refracted along ~BN, when:

NT/||CO, so:
AO/AN = CO/NT and:

o
NW||CP, so: © \ g A -
ZN/ZP = NW/CP &
and:
N
NW/NT = NP/NO P 5
(AWNT = APNO)
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The off-axis rays from
any on-axis object A,
(real or virtual), can not =
form a virtual on-axis LM
image at Z because 7

NW must be less than
CP for Z to be virtual;

but NW must also be
greater than NT.
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The off-axis rays
from any real
on-axis object A
can not form a real
on-axis image at Z
because NW must
be greater than (or
equal to) CP for Z
to be real; but NW
must also be
greater than NT.
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The off-axis rays from a virtual on-axis
object A can form a real on-axis image at Z,
if NW is greater than CP, and WT lies along
the axis.

33

. 7 ' T W
Since: ~
2<NWT = 2NPO = 2NCO =
and NW || CP N

WT lies along the axis when:

ANCO = AZCP

34

When off-axis rays
from a virtual on-axis
object A form a real

on-axis image Z, this A T \CB,
. ]

occurs at all points N

because:

AACN = ANCZ for all N,

(since they share proportional sides
around a common angle).

35

This can also be demonstrated using similar right triangles:
ASAN = CON, and AYZN = ACPN,

so that: (AO/AN)(ZN/ZP) = (SC/SN)(YN/YC).

Since: CY/CN = CN/CS = (CY + CN)/(CN + CS) = NY/NS
(SC/SN) = (NC/NY), and:

(AO/AN)(ZN/ZP) = CN/CY
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But it is also true that:
(CO/CP)(NP/NQO) = CN/CY, because:

(CO/CP)(NP/NO) = (LY/LN)(PN/PC) =

= (QN/QY)(PN/PC) = (QN/QY)(ZN/2Y) =

QN (ZN)/QY(ZY) which, by the property of cyclic
quadrilaterals discussed in slide #5, equals CN/CY
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Keeping:
R = (CO/CP) = (NO/NP)(AO/AN)(ZN/ZP)

constant, as N = B:

(BC/BC)(AC/AB)(ZB/ZC) = R

38

Refraction through a circle’s center occurs
when N lies at B, so that an object’s ray
from A to N lies along ABC, and an image
ray lies along BCZ. The locations of the
object A and image Z along the optic axis
BC are described by the equation:

R = CO/CP = (AC/AB)(ZB/ZC)
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If we draw A and Z along
the optic axis BC as if it
were a circle, and draw
CDL so that AL || ZB:
AACB = AZCD, and:

(AC/AB)(ZB/ZQ)
(ZC/2ZD)(ZB/ZC)
(ZB/ZD) L
so as the reference circle’s

radius = oo, A
(ZB/ZD) = R

40




AL I| ZB o \ HZ Il CL , /»‘\
A7 _ BL () ZB/ZD = HB/HC < )
~AZ = ~BL A s AHBZ = AHJC o
el when AHJC = AIAB: — &
HZ Il CL HC = IB, and:
ZC = LJ IB/IA = HZ/HB
~ZC = ~LJ
This results in :
~AZ + ~ZC = ~AZC Newton’s Equation: i
~BL + ~LJ = ~BLJ A T as the reference circle A 4 2
- radius = oo, ’ be
~AZC = ~BLJ (A)ZH) = (BI)BH) e,
AHCZ = AHJB = ABAZ A By as the reference circle’s radius = oo,
(HC/HZ) = (BA/BZ) . [1/(H2)BA)] = [1/(HC)BZ)] = R/(HB)B2)
[1/(HZ)(BA)] = [1/(HC)(BZ)] _ _
= and the resulting possible sums occur:
3
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HZ = HB + BZ
HB = HZ + BZ
BZ = HZ + HB

which, when multiplied by the above three
factors, form the conjugate foci equations.

44




The conjugate foci equations allow for
the effect of axial refraction at a circle
to be expressed as the term:

(1/HC) = (R/HB)
which is then additive with object

vergence, defined as (1/BA); or image
vergence, defined as (R/B2).
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When distance
refraction at ~JDE is
followed by
refraction into
distance at ~QGS
along axis DGF as
shown;

as «JFD = «SFG,

and both approach
Zero:
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Or when distance
refraction at ~JDE is
followed by refraction
into distance at
~QGS along axis
FDG, as shown;

as zJFD = SFG,

and both approach
Zero:
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0/a = (~LD/GD)/(~YG/GD) asP = F
0/a = (FD/FG) asP = F

so that afocal axial angular
magnification/minification equals:

FD/FG

48




The top diagram
llustrates a standard |, (q. c.

The bottom diagram
illustrates any
single-surfaced eye
with a distant object
A, and resulting
retinal image size
HZ.

49

. g B
single-surfaced eye i
with a distant object KZ
A, and resulting Z. oA
retinal image size
HoZo. / e

vl < B
z

50

As N = B, the retinal image size

magnification, ZH/Z.H., (relative to an
arbitrary standard which factors out with

subsequent comparisons), then approaches

its axial value:

ZQ/ZoQo - ZC/ZoCo - HC/HoCo

= (BH/R)/(BHo/R) = BH/BH,

51

Once again representing the
optic axis BCZ as a circle of
infinite radius, the distant
object A at o is focused by
the radius BC of the
presumed single refracting
surface towards the axial
image Z, which lies at the
retina H when there is no
distance refractive error. (BHo
represents the standard axial
length, and BC, represents
the standard single refracting
curvature radius).
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As pictured in the next three slides,
additional refraction G (at B) will create an
“ametropic” eye, with “distance refractive
error,” and a combination curvature effect
with total radius BL instead of BC, moving
image Z from the retina at H to its erroneous
location at E. The “front focal point” of the
“ametropic” eye is defined as point |.

A “distance correction” must focus the
distant object towards F, so that JF || BL, in
order to move image Z back to the retina H.
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JFNBL

RzZEWNCL
3y=EL

55

56




The distance

correction at D: T 4
D)J,LJ_Q -
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Since the distance correction D moves image Z
from E to retina H, rays leaving the refractive
error G (at B) after this correction is in place must
be afocal. This results in afocal axial angular
magnification equaling:

FD/FG (= FD/FB)

Therefore, the total axial magnification of
distance correction equals:

M = (BH/BH.)(FD/FB)
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When the front surface of a spectacle lens that
corrects distance refractive error is not flat, it is
convex; and adds an additional “shape” factor,
(fg/ft), to the afocal axial magnification of
distance correction. (Point “t” lies at D, and
FD/FB remains the “power” factor of the afocal
axial magnification of distance correction).
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“Axial Ametropia” occurs when E is at Ho, (and point |
is therefore at |lo, the front focal point of the standard
eye). The distance refractive error is then completely
due to an axial length BZ, (or BH), that is not standard.

AH.BH = AEBH = AEJL = Al,FB
(BH/BHo) = (FB/Flo)

M = (FB/Flo)(FD/FB) = FD/Flo
Therefore, in the case of axial ametropia, there is no

total axial magnification of distance correction if the
correction D lies at .

60




“Refractive Ametropia” occurs when the retina H
is at at Ho. The distance refractive error at G

moving image Z to E is then completely due to a
refracting radius BL that is not the standard BCeo.

When the distance correction D lies at B:

M = (BH/BH.)(FD/FB) = 1

61

There is no afocal axial
angular magnification
of distance correction

with a distant object AN T
“A,” and an emetropic Y - F
eye whose refractive - D

error at G (at B) is by
definition zero, (with its
focal point F at infinity).
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There is also no afocal axial

angular magnification

when object A is at the N
front focal point F of an X e
uncorrected ametropic eye \j

as shown, since this |
“myopic” system is not & EA
afocal, and involves only

one refracting element G.
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A distance myopic

correction at D .
creates afocal axial o N
angular minification: <
FD/FG < 1 Gt F

and this is relative to either the myopic eye
with object A at its front focal point F, or the
emetropic eye with object A at distance.
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Removing the
myopic distance
correction at D with

a converging lens i T

at D removes this

afocal axial angular

magnification with £ w FA
the factor:

FG/FD > 1

and this magnification of near correction is
relative to the distance corrected myope.
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If additional converging
power is added to the
converging lens so that
the near focal point is in
focus for an emetropic vy
eye, which we then
consider to be the
reference eye, the
magnification of near

correction is still that FG/FD > 1
which is removed with the

factor:

o0 £
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When an object at a J
standard distance A X
Fs is moved to F: /
i QY M b
& F Fe
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The object angular
subtense
magnification
equals:

0/a = (~GFs/BFs)/(~EFs/BFs)
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as XFs = 0

the object angular subtense magnification
approaches its axial value:

0/a = WFs/XFs = WFs/YF = BFs/BF

which equals the axial
object angular subtense magnification.
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The ratio describing axial object angular
subtense magnification:

BFs/BF

when multiplied by the ratio describing near
maghnification due to a single converging
lens producing parallel light for an
emmetropic eye:

FB/FD
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produces a ratio which factors out the
object’s actual distance to the eye,
confirming that when a converging lens is
used with its front focal point at the
object, so that parallel light leaves the
converging lens from the object, the
image size is the same regardless of the
object-to-eye distance.
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When the

converging lens P
at D is split into
two converging N, | -

lenses:
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with the same
combined A A
focus F: 0 &— |

gl
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the ratio describing axial near magnification
due to a single converging lens producing
parallel light for an emmetropic eye:

FB/FD

must be expressed as if all convergence
occurred at a single unknown axial point De:

FB/FDe
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De can be located using X
triangles.

H

D.G/D,F = DeQ/DeF

D,G/D,F, = D,J/D,F, L
D,F(DeQ/DeF) = D,F(D;J/D;F,)
DeQ/DeF = (D,F,/D,F)(D;J/D;F,)
1/DeF = (D,F,/D,F)(1/D;F,)
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Multiplying the axial object subtense
magnification by the axial
magnification of near correction
(relative to the same eye without
refractive error) produces:
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The converging lens D2 creates a virtual image
F+1 of an object at F. When considering a stand
magnifier with lens D2, constant stand height
D2F, and reading spectacle add or ocular
accommodation D1, the stand magnifier’s
(constant) enlargement of the object at F equals:

E = DoF1/DoF

The stand magnifier’s axial magnification is its
(constant) enlargement factor E, multiplied by
what would be produced by D+ alone, if the
object A were at F1.
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