Images Seen Through Water Gregg Baldwin OD 2021	Reference: Isaac Barrow's Optical Lectures 1667 Translated by H.C. Fay Edited by A.G. Bennett and D.F. Edgar Published by "The Worshipful Co. of Spectacle Makers" 1987 (Lectures 4 & 5)
1	2

Object in Water; Image Seen From Air

3

If underwater object D is a perpendicular distance DB from the plane of the water surface in all radial directions, the image of object D along that perpendicular, when seen from directly above in air, is at Z, and BD/BZ = 4/3.

Isaac Barrow showed that the image of object D, when seen from Q *obliquely* along image ray MNQ, also lies above the object, but towards the observer relative to DB. Isaac Barrow described a way to find all oblique image rays MNQ through a designated point X, without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with the perpendicular DB.

He first drew a reference right triangle created by drawing BE = BZ as shown, which created the following constant ratios for air/water refraction:

BD/BZ = BD/BE = 4/3 $DB/DE = 4/\sqrt{(16-9)} = 1.5$ $ED/EB = \sqrt{(16-9)/3} = 0.87$

He showed that, given DB and the designated point X, if we draw: PW/PX = DB/DE = 1.5then all image rays through X, (MXNQ) are found using: DB/YN = ED/EB = 0.87by drawing all possible reference lines of length YN = DB/0.87 through W, in order to locate the required positions of N.

This means that for any given DB, there can be a maximum of two image rays through the designated point X, since only two reference line segments within the right angle \angle (Y)B(N), and equaling his calculated constant YN, can fit through point W.

8

6

5

Isaac Barrow showed that YN can be drawn as the shortest segment through W bounded by the right angle \angle (Y)B(N) when right triangles \triangle YBN, \triangle NWT, and \triangle TWY are all drawn as similar.

As length YN = DB/0.87 through W changes, so must DB, or the position of D. Since PW must remain unchanged, so must PX = PW/1.5. Therefore, when the object is in water, Isaac Barrow's method finds the image ray XMNQ for a designated clear image X, and an undesignated object D.

10

Object in Air; Image Seen From Underwater

9

If object D is in air, and at a perpendicular distance DB from the surface of water in all radial directions, the image of the object along that perpendicular when seen from underwater is at Z, and BZ/BD = 4/3.

Isaac Barrow showed that the image of object D, when seen from Q *obliquely* along image ray MNQ, also lies above the object, but away from the observer relative to DB. Isaac Barrow described a way to find all oblique image rays MNQ through a point X, without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with the perpendicular DB.

He first drew a reference right triangle created by drawing BE = BD as shown, which created the following constant ratios for air/water refraction:

BZ/BD = BZ/BE = 4/3 $ZB/ZE = 4/\sqrt{(16-9)} = 1.5$ $EZ/EB = \sqrt{(16-9)/3} = 0.87$

He showed that, given DB and the designated point X, if we draw BY/BD = ZB/ZE = 1.5 then all image rays through X, (XMNQ) are found using: XP/WN = MB/YN = EZ/EB = 0.87 by drawing all possible reference lines of length WN = XP/0.87 through Y, in order to locate the required positions of N.

This means that for any given DB, there can be a maximum of two image rays through the designated point X, since only two reference line segments within the right angle \angle (W)P(N), and equaling his calculated constant WN, can fit through point Y.

14

13

Isaac Barrow showed that WN can be drawn as the shortest segment through Y bounded by the right angle \angle (W)P(N) when right triangles Δ WPN, Δ NYT, and Δ WYT are all drawn as similar.

17

As length WN = XP/0.87 through Y changes, so must XP, or the position of X. Since BY must remain unchanged, so must DB = BY/1.5. Therefore, when the object is in air, Isaac Barrow's method finds the image ray XMNQ for a designated object D, and an undesignated clear image X.

18