Images Seen Through Water

Gregg Baldwin OD
2021

Reference:
Isaac Barrow's Optical Lectures 1667
Translated by H.C. Fay
Edited by A.G. Bennett and D.F. Edgar
Published by
"The Worshipful Co. of Spectacle Makers" 1987 (Lectures 4 \& 5)

If underwater object D is a perpendicular distance DB from the plane of the water surface in all radial directions, the image of object D along that perpendicular, when seen from directly above in air, is at Z, and $B D / B Z=4 / 3$.

Isaac Barrow showed that the image of object D, when seen from Q obliquely along image ray MNQ, also lies above the object, but towards the observer relative to $D B$.

Isaac Barrow
described a way to find all oblique image rays MNQ through a designated point X , without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with

He first drew a reference right triangle created by drawing $\mathrm{BE}=\mathrm{BZ}$ as shown, which created the following constant ratios for air/water refraction:

$$
B D / B Z=B D / B E=4 / 3
$$

$\mathrm{DB} / \mathrm{DE}=4 / \sqrt{ }(16-9)=1.5$
$E D / E B=\sqrt{ }(16-9) / 3=0.87$

This means that for any given DB, there can be a maximum of two image rays through the designated point X , since only two reference line segments within the right angle $\angle(\mathrm{Y}) \mathrm{B}(\mathrm{N})$, and equaling his calculated constant YN , can fit through point W .

Isaac Barrow showed that YN can be drawn as the shortest segment through W bounded by the right angle $\angle(\mathrm{Y}) \mathrm{B}(\mathrm{N})$ when right triangles $\Delta \mathrm{YBN}, \triangle \mathrm{NWT}$, and $\triangle T W Y$ are all drawn as similar.

As length $\mathrm{YN}=\mathrm{DB} / 0.87$ through W changes, so must DB, or the position of D. Since PW must remain unchanged, so must $\mathrm{PX}=\mathrm{PW} / 1.5$. Therefore, when the object is in water, Isaac Barrow's method finds the image ray XMNQ for a designated clear image X , and an undesignated object D.

Object in Air; Image Seen From Underwater

If object D is in air, and at a perpendicular distance DB from the surface of water in all radial directions, the image of the object along that perpendicular when seen from underwater is at Z, and $B Z / B D=4 / 3$.

Isaac Barrow showed that the image of object D, when seen from Q obliquely along image ray MNQ, also lies above the object, but away from the observer relative to DB.

Isaac Barrow
described a way to find all oblique image rays MNQ through a point X , without knowing their points of refraction (N) along the surface of the water, or their intersections (M) with the perpendicular DB.

He first drew a reference right triangle created by drawing $B E=B D$ as shown, which created the following constant ratios for air/water refraction:
$B Z / B D=B Z / B E=4 / 3$
$Z B / Z E=4 / \sqrt{ }(16-9)=1.5$
$E Z / E B=\sqrt{ }(16-9) / 3=0.87$

He showed that, given DB and the designated point X, if we draw
$B Y / B D=Z B / Z E=1.5$
then all image rays through X, (XMNQ) are found using: $X P / W N=M B / Y N$ $=E Z / E B=0.87$
by drawing all possible reference lines of length WN = XP/0.87 through Y, in order to locate the required positions of N.

Isaac Barrow
showed that WN can be drawn as the shortest segment through Y bounded by the right angle $\angle(W) P(N)$ when right triangles $\triangle \mathrm{WPN}, \triangle \mathrm{NYT}$, and $\Delta \mathrm{WYT}$ are all drawn as similar.

As length $\mathrm{WN}=\mathrm{XP} / 0.87$ through Y changes, so must XP, or the position of X. Since BY must remain unchanged, so must $\mathrm{DB}=\mathrm{BY} / 1.5$. Therefore, when the object is in air, Isaac Barrow's method finds the image ray XMNQ for a designated object D, and an undesignated clear image X.

