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Before embarking on a purely geometric 
approach to ophthalmic optics, I’d like to 
establish the benefit of this approach with an 
example problem. I will outline a geometric 
method of locating a tangential image point 
from refraction at a plane surface using 
known triangles to solve for unknown 
triangles. I expect this will be obviously more 
accessible to the average ophthalmic optics 
student than mathematics involving 
multivariable equations.



Wavefronts turn when one side is slowed 
more than the other, as would happen if 
one of your car’s front wheels would brake 
harder than the other. This is best 
observed at the beach, where wavefronts 
from all directions bend, (refract), more 
parallel to the beach, no matter what 
direction they might have been traveling in 
the open ocean.



Wavefront GoNo bends, (refracts), 
into wavefront GN along diameter 
GoN when it travels GoG in the 
same time it travels NoN. 

As Go ⇒ N, GoG ⇒ NK, 

Therefore, let GoG = NK.

Since equal arcs ~SN and ~KN 
subtend equal angles,

ΔNoNK ≅ ΔKNA, and:

ℝ = NNo/GGo = NNo/NK = NK/NA


ℝ, the index of refraction, is therefore a velocity ratio. 



Think of light traveling along an object and 
image ray as a wave, much like the sound 
wave traveling from a speaker to a listener. If 
sound waves reflect off an irregular surface, so 
that each travels a different distance to the 
listener, the result is garbled, and unintelligible. 
However, if a large enough quantity of 
reflected sound waves travel an equal 
distance, (at the same speed and thus take 
the same time), they arrive, “in phase,” and 
can be understood. They are then, “focused.”  



The same would be true if some of the sound 
waves slowed down, and traveled a 
proportionately shorter distance; or sped up, 
and traveled a proportionately longer distance. 
These waves would be refracted, rather than 
reflected, and would still be, “focused,” since 
the speaker could be understood. The 
information they carried would be, “in phase.”



Section two of this material 
shows that only two object 
rays from point A can be 
refracted along a tangential 
section QBN of a plane surface 
and projected backwards as if 
to come from a single point X. 
Unless they are superimposed, 
they will be out of focus at X 
because the information they 
carry will be out of phase.



Section two also shows 
that these two rays are 
superimposed when this 
tangential template can 
be drawn with these 
conditions:

ℝ = NK/NA = OB/OA, 

and WK = YN.


Under these conditions, 
Z is therefore the 
(tangentially) focused 
image of A.



Unlike the tangential refraction just illustrated 
involving the bundle of rays around the object 
and image ray that vibrate in the plane 
represented by the given tangential template, 
sagittal refraction occurs involving the bundle 
of rays around the object and image ray that 
vibrate perpendicular to the given template. 

To visualize how a different sagittal focus and 
tangential focus can occur along the same 
image ray, consider the common bellows. Its 
sides can be compressed an equal or unequal 
angular amount, and still force air in the same 
direction, (though with different force).



The bundle of rays vibrating perpendicular 
to the given template involve equal angles 
of incidence to the refraction plane, given 
equal and opposite angular deviations from 
the object ray. 

The bundle of rays vibrating in the given 
template involve unequal angles of 
incidence with the refraction plane given 
equal and opposite angular deviations from 
the object ray. 



The tangential template allows for an 
understanding of how each variable of the 
problem affects others, as well as what is 
and what is not possible to discover with 
given variables. 

For example, given an 
object distance AB and ℝ, 
we can construct ΔBAO 
by making:

ℝ = OB/OA. 




With ΔBAO, 

we can find BY by making 
BO = BY. 


1). For a desired K, we can 
use ΔBKW to find ΔBNY by 
making KW = YN, and then 
find ΔZEN by first finding 
right triangles ΔNYT and 
ΔTYE. 



2). For a desired N, we can 
use ΔBNY to find ΔBKW 
by making YN = KW, and 
then  find ΔZEN by first 
finding right triangles 
ΔNYT and ΔTYE. 



This template works when YE > YN, as shown 
previously; or when YN > YE, as shown here:

(ℝ = NK/NA = OB/OA; BO = BY; YN = KW)



3). Using the template where 

YN > YE as the example, for a desired Z, we can 
use ΔQBY to find ΔBNY.

(ℝ = NK/NA = OB/OA; BO = BY; YN = KW)



The arc intercepted by 
∠DEN equals that 
intercepted by ∠DNE. 

Therefore, ∠DEY = ∠DNF. 

A concentric circle around circle ⊙QBY is 
drawn with its center at the midpoint of 
hypotenuse YQ, so that line segment YF 
lies on chord EN. 



DY = DF   

DE = DN 


ΔEDY = ΔNDF

EY = NF


Since QY is a diameter, 
∠QFY is a right angle. 
This means ∠QFN is 
also a right angle, 

and since EY = NF, 

∠TYE is a right angle. 



Note that QZ varies with EN because: 

QZ/EN = KB/YN = KB/KW = AB/AO, 

which is a constant determined by ℝ. 
Therefore, ℝ, which determines image ray 
projection NK given AN, also determines the 
location of the focused tangential image along NK. 


