Gregg Baldwin, OD
gbaldwinod@gmail.com
US copyright filed 3/22/17

Reference:

Isaac Barrows Optical Lectures, 1667;
Translated by H.C. Fay
Edited by A.G. Bennett
Publisher: The Worshipful Company of
Spectacle Makers;
London, England; 1987
ISBN \# 0-951-2217-0-1

Introduction

Equal arcs along a circle subtend equal angles along that circle. Therefore, certain triangles within a circle can be shown to have the same shape, with their sides forming ratio equalities. Cyclic quadrilaterals can then describe equalities with multiple ratios, and these multivariable relationships can be used to find triangles with other triangles. This plane geometry approach was used by Isaac Barrow in 1667 to describe tangential refraction along a line and at a circle, without trigonometry, algebra, or calculus. It is particularly suited for clinicians in the field of low vision and ophthalmic optics, since it requires no math background beyond high school plane geometry, and encourages a spatial understanding devoid of sign convention and jargon. For those clinicians wishing to have more than a working knowledge of the subject of
axial magnification, I have drawn a progression of geometric figures to cover the necessary preliminary concepts, each building on the previous, with labeled points maintaining their significance until noted otherwise. Axial magnification is presented only after a thorough spatial representation of tangential refraction along a line and a circle. In order to visualize the relevant axial ratio equalities involved using triangles, the optic axis is then represented as a circle of infinite radius, and the sign convention remains unnecessary.

Figure 1:

given a circle with diameter EU and center N

Figure 2:

with any FJ || SD:

$$
\sim \mathrm{SF}=\sim \mathrm{JD}
$$

$$
\angle \mathrm{FDS}=\angle \mathrm{DFJ}
$$

when $\angle \mathrm{JFR}=\angle \mathrm{SDE}:$

FR || ED

$$
\begin{aligned}
& \sim \mathrm{EF}=\sim \mathrm{RD} \\
& \sim \mathrm{EF}-\sim \mathrm{SF}=\sim \mathrm{RD}-\sim \mathrm{DJ} \\
& \sim \mathrm{ES}=\sim \mathrm{RJ}
\end{aligned}
$$

Equal angles along a circle subtend equal arcs

 along that circletherefore, an angle along any circle can be defined in terms of subtended arc and diameter
$\angle \mathrm{JFR}=\underset{\mathbf{E U}}{\sim \mathrm{RJ}}$
triangles need only two equal angles to be the same shape, (or \cong).

Figure 3:

FJ || SD
\sim SF $=\sim \mathrm{JD}$
$\Delta \mathrm{EJD} \cong \Delta \mathrm{DFI}$
$\frac{\mathrm{FD}}{\mathrm{FI}}=\frac{\mathrm{JE}}{\mathrm{JD}}$

Figure 4:

$\Delta \mathrm{EJS} \cong \Delta \mathrm{EDI}$
$\frac{\mathrm{EI}}{\mathrm{ED}}=\frac{\mathrm{ES}}{\mathrm{EJ}}$

$\frac{\mathrm{FD} \cdot \mathrm{EI}}{\mathrm{FI.ED}}=\frac{\mathrm{JE} \cdot \mathrm{ES}}{\mathrm{JD} \cdot \mathrm{EJ}}=\frac{\mathrm{SE}}{\mathrm{SF}}$
$\frac{\mathrm{IE}}{\mathrm{IF}}=\frac{\text { SE.DE }}{\text { SF.DF }}$
which describes an important property
of any cyclic quadrilateral SEDF

Figure 5:

LD || FE

$$
\frac{\mathrm{DE}}{\mathrm{DF}}=\frac{\mathrm{LF}}{\mathrm{LE}}
$$

$$
\frac{\mathrm{IE}}{\mathrm{IF}}=\frac{\mathrm{SE} . \mathrm{LF}}{\mathrm{SF} . \mathrm{LE}}
$$

$$
\frac{\mathrm{FE}}{\mathrm{FI}}=\frac{\mathrm{SE} \cdot \mathrm{LF}+\mathrm{SF} \cdot \mathrm{LE}}{\mathrm{SF} \cdot \mathrm{LE}}
$$

Figure 6:

LD || FE
$\sim \mathrm{EL}=\sim \mathrm{FD}$
$\Delta \mathrm{LSE} \cong \Delta \mathrm{FSI}$
$\mathrm{LS}=\frac{\mathrm{FS} . \mathrm{LE}}{\mathrm{FI}}$

FE.LS = SE.LF + SF.LE

which describes an important property of any cyclic quadrilateral SELF

Figure 7:

$$
\angle \mathrm{KNU}=\angle \mathrm{MDH}
$$

$$
\frac{\sim \mathrm{UK}}{\mathrm{UN}}=\sim \frac{\mathrm{MH}}{\mathrm{MD}}=\frac{\sim \frac{\mathrm{MH}}{\mathrm{UE}}}{}=
$$

$$
\frac{2(\sim \mathrm{UM})}{\mathrm{UE}}=\frac{2(\sim \mathrm{UM})}{2(\mathrm{UN})}
$$

$$
\angle \mathrm{KNU}=2 \angle \mathrm{MEU}
$$

$$
\sim \mathbf{U K}=\sim \mathbf{U M}
$$

let $\mathrm{K} \Rightarrow \mathrm{N}$ and $\mathrm{D} \Rightarrow \mathrm{H}$:

Figure 8:

Figure 9:

$\mathrm{AK} \geq \mathrm{NP} \| \mathrm{AK}$
$\angle \mathrm{NAK}=\frac{\sim \mathrm{NPK}}{\mathrm{NU}} \leq \sim \frac{\mathrm{NU}}{\mathrm{NU}}=\frac{\pi}{2}$

```
NK.AP = NA.KP + AK.NP
NK}\mp@subsup{}{}{2}=\mp@subsup{NAA}{}{2}+\textrm{AK}.\textrm{NP
NP = AK - 2(NA)}\underline{AB
\KUN \cong \triangleBAN
NK}\mp@subsup{}{}{2}=\mp@subsup{N}{}{2}+\mp@subsup{\textrm{AK}}{}{2}
    2(AK)NA.UK
        UN
Figure 10:
```



```
\(\mathrm{BK}^{2}-\mathrm{BA}^{2}=\mathrm{AK}^{2}-2(\mathrm{AK}) \mathrm{AB}=\)
AK.NP \(=\mathrm{NK}^{2}-\mathrm{NA}^{2}\)
```

Figure 11:

$\mathrm{BK}^{2}-\mathrm{BA}^{2}=\mathrm{NK}^{2}-\mathrm{NA}^{2}=\mathrm{CK}^{2}$
Figure 12:

$$
\begin{aligned}
& \frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{TK}}{\mathrm{~TB}} \\
& \frac{\mathrm{CK}^{2}}{\mathrm{CN}^{2}}=\frac{\mathrm{AB}^{2}}{\mathrm{AO}^{2}}=\frac{\mathrm{BK}^{2}}{\mathrm{BT}^{2}}=\frac{\mathrm{CK}^{2}+\mathrm{AB}^{2}}{\mathrm{CN}^{2}+\mathrm{AO}^{2}}
\end{aligned}
$$

$$
\mathrm{BT}^{2}=\mathrm{CN}^{2}+\mathrm{AO}^{2}
$$

```
BK}\mp@subsup{}{}{2}=\mp@subsup{\textrm{CK}}{}{2}+\mp@subsup{\textrm{AB}}{}{2
BT}=\mp@subsup{\textrm{CN}}{}{2}+\mp@subsup{\textrm{AO}}{}{2
    = AN
    = BN 2}+\mp@subsup{\textrm{AB}}{}{2}+\mp@subsup{\textrm{BO}}{}{2}-\mp@subsup{\textrm{AB}}{}{2
    = NY'
BT = NY
given }\triangle\textrm{BAO
use }\triangle\textrm{KBT}\mathrm{ to find }\triangle\textrm{YBN
and use }\triangle\textrm{YBN}\mathrm{ to find }\triangle\textrm{KBT
```

Figure 13:


```
NP \geq AK | NP
LNAK}=~~~N\frac{NUK}{NU}\geq~\frac{NU}{NU}=\frac{\pi}{2
```

NK.AP $=$ NA.KP + AK.NP

```
NK}\mp@subsup{}{2}{=}=\mp@subsup{NAA}{}{2}+\textrm{AK}.\textrm{NP
```

$\mathrm{NP}=\mathrm{AK}+2(\mathrm{NA}) \underline{\mathrm{AB}}$
$\Delta \mathrm{KUN} \cong \Delta \mathrm{GPK} \cong \Delta \mathrm{BAN}$
$\mathrm{NK}^{2}=\mathrm{NA}^{2}+\mathrm{AK}^{2}+$
2(AK)NA. $\frac{\mathrm{UK}}{\mathrm{UN}}$

Figure 14:


```
BK}\mp@subsup{}{2}{-}-\mp@subsup{\textrm{BA}}{}{2}=\mp@subsup{\textrm{AK}}{}{2}+2(\textrm{AK})\textrm{AB}
```

AK.NP $=\mathrm{NK}^{2}-\mathrm{NA}^{2}$

Figure 15:

$$
\mathrm{BK}^{2}-\mathrm{BA}^{2}=\mathrm{NK}^{2}-\mathrm{NA}^{2}=\mathrm{CK}^{2}
$$

Figure 16:

$\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{WB}}{\mathrm{WK}}$
$\frac{\mathrm{CK}^{2}}{\mathrm{CN}^{2}}=\frac{\mathrm{AB}^{2}}{\mathrm{AO}^{2}}=\frac{\mathrm{KB}^{2}}{\mathrm{KW}^{2}}=\frac{\mathrm{CK}^{2}+\mathrm{AB}^{2}}{\mathrm{CN}^{2}+\mathrm{AO}^{2}}$
$\mathrm{KW}^{2}=\mathrm{CN}^{2}+\mathrm{AO}^{2}$
because:

```
KB}\mp@subsup{}{}{2}=\mp@subsup{\textrm{CK}}{}{2}+\mp@subsup{\textrm{AB}}{}{2
KW }\mp@subsup{}{}{2}=\mp@subsup{\textrm{CN}}{}{2}+\mp@subsup{\textrm{AO}}{}{2
    = AN
    = BA }\mp@subsup{}{}{2}+\mp@subsup{\textrm{BN}}{}{2}+\mp@subsup{\textrm{BO}}{}{2}-\mp@subsup{\textrm{BA}}{}{2
    = YN }\mp@subsup{}{}{2
```

$\mathrm{KW}=\mathrm{YN}$
given $\triangle \mathrm{BAO}$
use $\triangle \mathrm{BKW}$ to find $\triangle \mathrm{YBN}$ and use $\triangle \mathrm{YBN}$ to find $\triangle \mathrm{BKW}$

Figure 17:

with NK constant
let circle NPKA shrink
and rotate counter-clockwise around N so that:
$\mathrm{U} \Rightarrow \mathrm{K}$, and $\angle \mathrm{NAK} \Rightarrow \angle \mathrm{NBK}=\frac{\pi}{2}$
or, with NA constant
let circle NPKA expand
and rotate clockwise
around N
so that:
$\mathrm{K} \Rightarrow \mathrm{U}$, and $\angle \mathrm{NAK} \Rightarrow \angle \mathrm{NBK}=\frac{\pi}{2}$
$\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{WB}}{\mathrm{WK}}$
$\mathrm{KW}=\mathrm{YN}$
Figure 18:

with either NK or NA constant

$$
\begin{aligned}
& \text { as NU } \Rightarrow \infty \\
& \angle N A K \Rightarrow
\end{aligned}
$$

$$
\frac{(\mathrm{KW})}{(\mathrm{OA})}=\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{WB}}{\mathrm{WK}}
$$

$$
\mathrm{KW}(=\mathrm{OB})=\mathrm{YN}
$$

Figure 19:

with NK constant
let circle NPKA expand and rotate clockwise around N
so that:
$A \Rightarrow K$
or, with NA constant
let circle NPKA shrink
and rotate counter-clockwise around N so that:
$\mathrm{K} \Rightarrow \mathrm{A}$
$\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{WB}}{\mathrm{WK}}$
$\mathrm{KW}=\mathrm{YN}$
Figure 20:

keeping only:
ABCKNOWY:
when $\quad \Delta \mathrm{KNC} \cong \Delta \mathrm{ANB}$:

$$
\begin{aligned}
& \frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{NA}}{\mathrm{NB}}=\frac{\mathrm{NC}}{\mathrm{NB}}=\frac{\mathrm{NS}}{\mathrm{NC}} \\
& \frac{\mathrm{NK}}{\mathrm{NB}}=\frac{\mathrm{GN}}{\mathrm{GP}}=\frac{\mathrm{NK}+\mathrm{NB}}{\mathrm{NK}} \\
& \frac{\mathrm{NK}}{\mathrm{NB}}=1+\frac{1}{\mathrm{NK} / \mathrm{NB}}=1+\frac{1}{1+\ldots} \\
& \frac{\mathrm{NK}}{\mathrm{NB}}=\varphi \\
& \frac{\mathrm{NB}}{\mathrm{NK}}=\varphi-1
\end{aligned}
$$

Figure 21:

$$
\begin{aligned}
& \frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{NK}}{\mathrm{NC}}=\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{WB}}{\mathrm{WK}} \\
& \mathrm{KW}=\mathrm{YN}
\end{aligned}
$$

Note that there is no length relative to itself, ("unit length"), that will measure all finite lengths

Figure 22:

$\frac{\mathrm{OB}}{\mathrm{OA}}=\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{N}^{\prime} \mathrm{K}^{\prime}}{\mathrm{N}^{\prime} \mathrm{A}}$
$\mathrm{KW}=\mathrm{YN} ; \mathrm{K}^{\prime} \mathrm{W}^{\prime}=\mathrm{YN}^{\prime}$
$\frac{\mathrm{KB}}{\mathrm{YN}}=\frac{\mathrm{K}^{\prime} \mathrm{B}}{\mathrm{YN}^{\prime}}$

Figure 23:

$\frac{\mathrm{QX}}{\mathrm{EN}}=\frac{\mathrm{KB}}{\mathrm{YN}}=\frac{\mathrm{K}^{\prime} \mathrm{B}}{\mathrm{YN}^{\prime}}=\frac{\mathrm{QX}}{\mathrm{E}^{\prime} \mathrm{N}^{\prime}}$,
only one N'K'X exists for NKX
because only one E'N' equals EN
with $\triangle \mathrm{BAX}$ constant
only one $\triangle \mathrm{XNN}$ ' exists for $\triangle \mathrm{OAB}$
in order for EN to equal E'N'
as N^{\prime} approaches N
both EN and E'N' must rotate around Y until
they superimpose
therefore, with \triangle BAX constant
as N^{\prime} approaches N
$\Delta \mathrm{OAB}$ (or NK) must change
NA

Figure 24:

keeping only: ABEKK'NN'OWXY:

LH || ND

LH > NF > NE
holds true as:
$H \Rightarrow E$

Figure 25:

CQ \| ES
CQ > EG > EN

holds true as $\mathrm{Q} \Rightarrow \mathrm{N}$

Figure 26:

$\mathrm{X}=\mathrm{Z}$ when:
$\frac{B N}{B Y}=\frac{R T}{R Y}=\frac{R T}{B N}$
$\frac{\mathrm{BN}^{2}}{\mathrm{BY}^{2}}=\frac{\mathrm{RT}}{\mathrm{BY}}=\frac{\mathrm{YE}}{\mathrm{YN}}=\frac{\mathrm{KX}}{\mathrm{KN}}$

Figure 27:

keeping only:
ABEQKNOTWYZ:
given $\triangle \mathrm{YBN}$, find $\triangle \mathrm{YBQ}$ using:
$\Delta \mathrm{YBN} \cong \Delta \mathrm{NYT} \cong \Delta \mathrm{NTE}$

Figure 28:

given $\triangle \mathrm{YBQ}$, find $\triangle \mathrm{YBN}$ by making:
$E Y=N F$
which occurs when \sim EN lies on a circle

concentric with circle YFBQ
because:
$\mathrm{DY}=\mathrm{DF}$
$\Delta \mathrm{EDY}=\Delta \mathrm{NDF}$
$E Y=N F$

Figure 29:

$\sim \mathrm{NS}=\sim \mathrm{NK}$
$\Delta \mathrm{N}, \mathrm{NK} \cong \Delta \mathrm{KNA}$
$\mathbb{R}=\frac{\mathrm{NN}_{\circ}}{\mathrm{GG}_{\circ}}=\frac{\mathrm{NN} \mathrm{o}_{\circ}}{\mathrm{NK}}=\frac{\mathrm{NK}}{\mathrm{NA}}$

wavefront GoNo refracts into wavefront GN along GoN, because it travels GoG
in the same time it travels $\mathrm{N} \circ \mathrm{N}$

Figure 30:

If $\mathbb{R}=\frac{\mathrm{OB}}{\mathrm{OA}}$ and $\mathrm{KW}=\mathrm{YN}$:
$\mathbb{R}=\frac{\mathrm{NK}}{\mathrm{NA}}$
and Z is the clear image of object A refracted at \mathbf{N} along $\mathbf{B N}$
given $\triangle \mathrm{BAO}$:
use $\triangle \mathrm{BKW}$ or $\triangle \mathrm{QBY}$
to find $\triangle \mathrm{BNY}$
use $\triangle \mathrm{BNY}$ to find
$\triangle \mathrm{BKW}$ or $\triangle \mathrm{QBY}$

Figure 31:

keeping only:
ABKNXZ:
$\triangle \mathrm{KNA} \cong \triangle \mathrm{OCP}$
$\mathbb{R}=\frac{\mathrm{NK}}{\mathrm{NA}}=\frac{\mathrm{N}^{\prime} \mathrm{K}^{\prime}}{\mathrm{N}^{\prime} \mathrm{A}}=\frac{\mathrm{CO}}{\mathrm{CP}}$
Figure 32:

[^0]Figure 33:

Figure 34:

the virtual object A can not be projected on a screen due to refraction at BN

Figure 35:

$\triangle \mathrm{XNN}{ }^{\prime} \cong \triangle \mathrm{XFE}$
the virtual image (Z) can not be projected on a screen

Figure 36:

the real image (Z) can be projected on a screen
$\frac{\mathrm{AG}+\mathrm{AN}^{\prime}}{2 \mathrm{AN}^{\prime}}=\frac{\mathrm{QG}^{\prime}+\mathrm{NN}^{\prime}}{2 \mathrm{NN}^{\prime}}$
$\frac{\mathrm{XE}+\mathrm{XN}^{\prime}}{2 \mathrm{XN}^{\prime}}=\frac{\mathrm{EF}+\mathrm{NN}^{\prime}}{2 \mathrm{NN}^{\prime}}$
$\frac{\mathrm{QG}+\mathrm{NN}^{\prime}}{\mathrm{EF}+\mathrm{NN}^{\prime}},=\frac{\left(\mathrm{AG}+\mathrm{AN}^{\prime}\right.}{2 \mathrm{AN}^{\prime}} \frac{2 \mathrm{XN}^{\prime}}{\left(\mathrm{XE}+\mathrm{XN}^{\prime}\right)}$

Figure 37:

$\mathrm{HD}=\mathrm{QN}^{\prime}$
$\mathrm{RJ}=\mathrm{FN}^{\prime}$
as $\mathrm{N}^{\prime} \Rightarrow \mathrm{N}$:
$\mathrm{X} \Rightarrow \mathrm{Z}$, and $\sim \mathrm{DJ} \Rightarrow \mathrm{DJ}$
so that:

Figure 38:

$\frac{\mathrm{DS}}{\mathrm{JI}} \Rightarrow \frac{\mathrm{CO}}{\mathrm{CP}}$
$\frac{\mathrm{JI}}{\mathrm{JN}} \Rightarrow \frac{\mathrm{NP}}{\mathrm{NC}}$
$\frac{\mathrm{DN}}{\mathrm{DS}} \Rightarrow \frac{\mathrm{NC}}{\mathrm{NO}}$
$\frac{\mathrm{ND}}{\mathrm{NJ}} \Rightarrow \quad \frac{\mathrm{NP}}{\mathrm{NO}} \frac{\mathrm{CO}}{\mathrm{CP}}$
thus, as $\mathrm{N}^{\prime} \Rightarrow \mathrm{N}$ and $\mathrm{X} \Rightarrow \mathrm{Z}$:
$\frac{\sim \mathrm{QG}+\sim \mathrm{NN}^{\prime}}{\sim \mathrm{EF}+\sim \mathrm{NN}^{\prime}}, \Rightarrow \frac{\mathrm{QG}+\mathrm{NN}^{\prime}}{\mathrm{EF}+\mathrm{NN}}, \Rightarrow$
$\frac{\mathrm{AO}}{\mathrm{AN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}$
and:
$\frac{\sim \mathrm{QG}+\sim \mathrm{NN}^{\prime}}{\sim \mathrm{EF}+\sim \mathrm{NN}^{\prime}},=\frac{2(\sim \mathrm{ND})}{2(\sim \mathrm{NJ})} \Rightarrow$
$\frac{\mathrm{ND}}{\mathrm{NJ}} \Rightarrow \frac{\mathrm{NP}}{\mathrm{NO}} \frac{\mathrm{CO}}{\mathrm{CP}}$

Figure 39:

keeping only:
ABKNXZCPO and \mathbb{R} :

NT || CO

NW || CP
when $\mathrm{X}=\mathrm{Z}$ lies along
both NP and CW:
$\frac{\mathrm{AO}}{\mathrm{AN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}=\frac{\mathrm{CO}}{\mathrm{NT}} \frac{\mathrm{NW}}{\mathrm{CP}}$
when $\Delta \mathrm{WNT} \cong \Delta \mathrm{PNO}, \mathrm{NW}>\mathrm{NT}$
and
$\frac{\mathrm{AO}}{\mathrm{AN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}=\frac{\mathrm{NP}}{\mathrm{NO}} \frac{\mathrm{CO}}{\mathrm{CP}}$
so if:

NT \| CO

NW || CP
and $\triangle \mathrm{WNT} \cong \triangle \mathrm{PNO}:$
$\mathbb{R}=\frac{\mathrm{CO}}{\mathrm{CP}}$
and Z is the clear image of object
A refracted at N along $\sim \mathbf{B N}$

Figure 40:

Figure 41:

Figure 42:

$\frac{\mathrm{CY}}{\mathrm{CN}}=\frac{\mathrm{CN}}{\mathrm{CS}}=\frac{\mathrm{CY}+\mathrm{CN}}{\mathrm{CN}+\mathrm{CS}}=\frac{\mathrm{NY}}{\mathrm{NS}}$
$\frac{\mathrm{AO}}{\mathrm{AN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}=\frac{\mathrm{SC}}{\mathrm{SN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}=\frac{\mathrm{NC}}{\mathrm{NY}} \frac{\mathrm{ZN}}{\mathrm{ZP}}=$
$\frac{\mathrm{NC}}{\mathrm{NY}} \frac{\mathrm{YN}}{\mathrm{YC}}=\frac{\mathrm{CN}}{\mathrm{CY}}$
$\frac{\mathrm{CO}}{\mathrm{CP}} \frac{\mathrm{NP}}{\mathrm{NO}}=\frac{\mathrm{LY}}{\mathrm{LN}} \frac{\mathrm{PN}}{\mathrm{PC}}=\frac{\mathrm{QN}}{\mathrm{QY}} \frac{\mathrm{PN}}{\mathrm{PC}}=$
$\frac{\mathrm{QN}(\mathrm{ZN})}{\mathrm{QY}(\mathrm{ZY})}=\frac{\mathrm{CN}}{\mathrm{CY}}$

Figure 43:

NT \| CO

NW \| CP
$\Delta \mathrm{WNT} \cong \Delta \mathrm{PNO}$
$\angle \mathrm{NWT}=\angle \mathrm{NPO}=\angle \mathrm{NCO}$
$\Delta \mathrm{CPN} \cong \Delta \mathrm{COA}$

Figure 44:

$\Delta \mathrm{ACN} \cong \Delta \mathrm{NCZ}$ for all N
keeping:
$\mathbb{R}=\frac{\mathrm{CO}}{\mathrm{CP}}=\frac{\mathrm{NO}}{\mathrm{NP}} \frac{\mathrm{AO}}{\mathrm{AN}} \frac{\mathrm{ZN}}{\mathrm{ZP}}$
constant as $\mathrm{N} \Rightarrow \mathrm{B}$:
$\frac{\mathrm{BC}}{\mathrm{BC}} \frac{\mathrm{AC}}{\mathrm{AB}} \frac{\mathrm{ZB}}{\mathrm{ZC}} \Rightarrow \mathbb{R}$

Figure 45:

"axial" refraction can be described along a circle of infinite radius
draw CDL so:

AL || ZB so:

$\triangle \mathrm{ACB} \cong \triangle \mathrm{ZCD}$ and:
$\frac{\mathrm{AC}}{\mathrm{AB}} \frac{\mathrm{ZB}}{\mathrm{ZC}}=\frac{\mathrm{ZC}}{\mathrm{ZD}} \frac{\mathrm{ZB}}{\mathrm{ZC}}=\frac{\mathrm{ZB}}{\mathrm{ZD}}$
so as the radius $\Rightarrow \infty$
$\frac{\mathrm{ZB}}{\mathrm{ZD}} \Rightarrow \mathbb{R}$

Figure 46:

HZ || CL
$\frac{\mathrm{ZB}}{\mathrm{ZD}}=\frac{\mathrm{HB}}{\mathrm{HC}}$
$\sim \mathrm{AZ}=\sim \mathrm{BL}$
$\sim \mathrm{ZC}=\sim \mathrm{LJ}$
$\sim \mathrm{AC}=\sim \mathrm{BJ}$

AJ || CB
$\Delta \mathrm{HBZ} \cong \Delta \mathrm{HJC}$
when $\Delta \mathrm{HJC}=\Delta \mathrm{IAB}$:
$\frac{\mathrm{BI}}{\mathrm{ZH}}=\frac{\mathrm{AI}}{\mathrm{BH}}$
$\mathrm{BI}(\mathrm{BH})=\mathrm{ZH}(\mathrm{AI})$
Figure 47:

$\Delta \mathrm{HCZ} \cong \Delta \mathrm{HJB} \cong \Delta \mathrm{BAZ}$

Figure 48:

$\Delta \mathrm{HCZ} \cong \Delta \mathrm{HJB} \cong \Delta \mathrm{BAZ}$
$\frac{\mathrm{HC}}{\mathrm{HZ}}=\frac{\mathrm{BA}}{\mathrm{BZ}}$

$\frac{1}{\mathrm{HZ}(\mathrm{BA})}=\frac{1}{\mathrm{HC}(\mathrm{BZ})} \quad \Rightarrow \frac{\mathbb{R}}{\mathrm{HB}(\mathrm{BZ})}$

$\mathrm{ZH}=\mathrm{HB}+\mathrm{BZ}$
$\frac{1}{\mathrm{BA}}=\frac{\mathbb{R}}{\mathrm{BZ}}+\frac{\mathbb{R}}{\mathrm{HB}}$

$$
\frac{\mathbb{R}}{\mathrm{HB}}=\frac{1}{\mathrm{BA}}+\frac{\mathbb{R}}{\mathrm{BZ}}
$$

$$
\frac{\mathbb{R}}{\mathrm{BZ}}=\frac{1}{\mathrm{BA}}+\frac{\mathbb{R}}{\mathrm{HB}}
$$

Figure 49:
keeping only:
ZAHCBNI and \mathbb{R} :

as $\angle \mathrm{SFG}=\angle \mathrm{GFJ} \Rightarrow 0$
Figure 50:

$$
\frac{\theta}{\sim} \Rightarrow \frac{\sim \mathrm{LD} / \mathrm{GD}}{\sim \mathrm{VG} / \mathrm{GD}} \quad \text { as } \quad \mathrm{P} \Rightarrow \mathrm{~F}
$$

therefore, $\frac{\theta}{\alpha} \Rightarrow \frac{\mathrm{FD}}{\mathrm{FG}}$
changing $\mathrm{TS}=\mathrm{TG}=\mathrm{TQ}$
so rays remain afocal:

Figure 51:

as $\angle \mathrm{SFG}=\angle \mathrm{GFJ} \Rightarrow 0$
$\frac{\theta}{\alpha} \Rightarrow \frac{\mathrm{FD}}{\mathrm{FG}}$

Figure 52:

as $\angle \mathrm{SFG}=\angle \mathrm{GFJ} \Rightarrow 0$

Figure 53:

$\frac{\theta}{\alpha} \Rightarrow \frac{\sim L D / G D}{\sim \mathrm{YG} / \mathrm{GD}} \quad$ as $\quad \mathrm{P} \Rightarrow \mathrm{F}$
therefore, $\frac{\theta}{\alpha} \Rightarrow \frac{\mathrm{FD}}{\mathrm{FG}}$
changing $\mathrm{TS}=\mathrm{TG}=\mathrm{TQ}$
so rays remain afocal:

Figure 54:

as $\angle \mathrm{SFG}=\angle \mathrm{GFJ} \Rightarrow 0$
$\frac{\theta}{\alpha} \Rightarrow \frac{\mathrm{FD}}{\mathrm{FG}}$

Figure 55:

keeping only:
ZAHCBNIDGF and \mathbb{R} :
$\frac{\mathrm{ZQ}}{\mathrm{Z}_{\circ} \mathrm{Q}_{\circ}}=\frac{\mathrm{ZC}}{\mathrm{Z}_{\circ} \mathrm{C}_{\circ}}=\frac{\mathrm{HC}}{\mathrm{H}_{\circ} \mathrm{C}_{\circ}}=\frac{\mathrm{BH} / \mathbb{R}}{\mathrm{BH} / \mathbb{R}}$

Figure 56:

Figure 57:

additional refraction at G (at B) creates distance refractive error with combined curvature of radius BL

Figure 58:

the distance correction must focus $(\mathrm{A} \infty)$ at F
so that JF || BE

Figure 59:

since the distance correction at D moves Z to H rays leaving G after this correction are afocal

Figure 60:

$\boldsymbol{M}=\frac{\mathrm{BH}}{\mathrm{BH}} \circ \frac{\mathrm{FD}}{\mathrm{FB}}$
$\Delta \mathrm{EBH} \cong \Delta \mathrm{EJL}$
when E is at Ho :
$\Delta \mathrm{EJL}=\Delta \mathrm{I} \circ \mathrm{FB}$ so:
$\boldsymbol{M}=\mathrm{FB} \underline{\mathrm{FD}}$
measure $M=\frac{\mathrm{BH}}{\mathrm{BH}} \circ \frac{\mathrm{FD}}{\mathrm{FB}}$

by measuring FD and BD

 to find FB,and by measuring BL to find
$\frac{\mathbb{R}}{\mathrm{BE}}=\frac{1}{\mathrm{EL}}=\frac{\mathbb{R}-1}{\mathrm{BL}}$
in order to calculate BH using:

or

$$
\frac{\mathbb{R}}{\mathrm{BH}}=\frac{1}{\mathrm{BF}}+\frac{\mathbb{R}}{\mathrm{BE}}
$$

note that the condition producing a virtual image at H :

$$
\frac{1}{\mathrm{BF}}=\frac{\mathbb{R}}{\mathrm{BE}}+\frac{\mathbb{R}}{\mathrm{BH}}
$$

is meaningless when considering the focused axial image size magnification BH BH。
when the standard image is real.

Figure 61:

keeping only:
ZAHCBNDGFEL and \mathbb{R} :

when a light source at S
focused towards ∞ at D
tilts up
the reflection off a surface at H observed at S
of its unfocused off-axis image
moves up or down
adding possible distance corrections with known
values
of FD at D
the proper distance correction
can be found
which moves the focused image
of S on axis at H
and eliminates this movement

Figure 62:

BL Is found
by changing BX
to clearly focus
the reflected image V
of light source T

Figure 63:

make $\mathrm{T} \Rightarrow \mathrm{X}$
so that $2 \mathrm{BU} \Rightarrow \mathrm{BL}$
and $\angle \mathrm{NBU} \Rightarrow \frac{\pi}{2}$
so that:
$\frac{\mathrm{XT}}{\mathrm{XW}} \rightarrow \frac{\mathrm{UX}}{\mathrm{UB}} \rightarrow \frac{2 \mathrm{UX}}{\mathrm{BL}} \leftarrow \frac{2 \mathrm{VW}}{\mathrm{BL}}$
with a very small XT
measure XW and VW
to approximate BL

Figure 64:

keeping only:
ZAHCBNDFGEL and \mathbb{R} :
using $\mathrm{BH} \circ$ as the chosen ocular standard where:

$$
\mathbb{R}=\frac{\mathrm{H}_{\circ} \mathrm{B}}{\mathrm{H}_{\circ} \mathrm{C}}=\frac{\mathrm{HB}}{\mathrm{HC}}=\frac{\mathrm{EB}}{\mathrm{EL}}=\frac{4}{3}
$$

and $\frac{\mathbb{R}}{\mathrm{BH}}=60$ diopters
(where a diopter is a unit of inverse
meter length)
only the corneal component \boldsymbol{K}
of $\frac{\mathbb{R}}{B E}$ can be approximated with
BE
BL from the reflection off B
when its deviation from the standard 42 is assumed to equal the deviation
of the total $\underline{\mathbb{R}}$
from its standard of 60 :
$\boldsymbol{K}+(42-\boldsymbol{K})=42$
$\frac{\mathbb{R}}{\mathrm{BE}}+(42-\boldsymbol{K})=60$
$\frac{\mathbb{R}}{\mathrm{BE}}=K+18$
and since:
$M=\frac{\mathbb{R}}{\mathrm{BH}} \quad \frac{\mathrm{BH}}{\mathbb{R}} \quad \frac{\mathrm{FD}}{\mathrm{FB}}$
$\boldsymbol{M}=\frac{60}{\frac{\mathbb{R}}{\mathrm{BE}} \pm \frac{1}{\mathrm{BF}}}\left(\frac{(\mathrm{FD})}{(\mathrm{FB})}\right.$

Figure 65:

when the front surface of a spectacle lens that corrects distance refractive error is not flat it is convex and produces additional axial afocal angular magnification
placing t at D :
$\boldsymbol{M}=\frac{\mathrm{BH}}{\mathrm{BH}} \stackrel{\underline{\mathrm{FD}}}{\mathrm{FB}} \frac{\mathrm{fq}}{\mathrm{ft}}$

In summary:

axial magnification of distance correction equals:
$\boldsymbol{M}=\frac{\mathrm{BH}}{\mathrm{BH}} \stackrel{\underline{\mathrm{FD}}}{\mathrm{FB}} \frac{\mathrm{fq}}{\mathrm{ft}}$
where:

```
BH}=\mathrm{ axial corrected image
BHo size magnification
and:
FD
```

$\underline{\mathrm{FD}}=$ "power factor"
FB
$\underline{\mathrm{fq}}=$ "shape factor"
ft

Figure 66:

adding new myopic
distance error
at G_{2} (at B)
$\mathrm{JF}_{2} \| \mathrm{EB}$

Figure 67:

the new myopic distance correction at D_{2} moves Z to H
and retinal image size magnification remains unchanged:

Figure 68:

the new myopic
distance correction at D_{2} produces the additional
axial afocal angular magnification factor
$\underline{\mathrm{F}_{2} \mathrm{D}_{2}}$
$\mathrm{F}_{2} \mathrm{~B}$

Figure 69:

removing the new myopic distance correction at D_{2} using a magnifier (converging lens) creates a near correction for F_{2} (shown with reversed light)

Figure 70:

this near correction removes the axial afocal angular magnification of distance correction factor of
$\frac{\mathrm{F}_{2} \mathrm{D}_{2}}{\mathrm{~F}_{2} \mathrm{~B}}$
by the addition of the axial magnification of near correction factor of
$\frac{\mathrm{F}_{2} \mathrm{~B}}{\mathrm{~F}_{2} \mathrm{D}_{2}}$

Figure 71:

when an object at
a standard distance Fs
is moved to F_{2}

Figure 72:

the near object subtense magnification equals

$$
\frac{\theta}{\alpha}=\frac{\sim \mathrm{gFs} / \mathrm{BFs}}{\sim \mathrm{eFs} / \mathrm{BFs}}
$$

as $\mathrm{yF}_{2}=\mathrm{xFs} \Rightarrow 0$:
$\frac{\theta}{\alpha} \Rightarrow \frac{\mathrm{wFs}}{\mathrm{xFs}}=\frac{\mathrm{wFs}}{\mathrm{yF}_{2}}=\frac{\mathrm{BFs}}{\mathrm{BF}_{2}}$
multiplying this factor
by the axial magnification
of near correction for F_{2} produces:

$$
\frac{\mathrm{F}_{2} \mathrm{~B}}{\mathrm{~F}_{2} \mathrm{D}_{2}} \frac{\mathrm{BFs}}{\mathrm{BF}_{2}}=\frac{\mathrm{BFs}}{\mathrm{~F}_{2} \mathrm{D}_{2}}
$$

Figure 73:

adding new hyperopic distance error
at G_{3} (at B)
$\mathrm{JF}_{3} \| \mathrm{EB}$

Figure 74:

the new hyperopic
distance correction
at D_{3} moves Z to H
and retinal image size magnification
remains unchanged:
BH
BH。

Figure 75:

the new hyperopic
distance correction at D_{3}
produces the additional
axial afocal angular magnification
factor

$\mathrm{F}_{3} \mathrm{D}_{3}$
$\mathrm{F}_{3} \mathrm{~B}$

Figure 76:

removing the new hyperopic
distance error at G_{3}
without removing
its correction at D_{3}
creates a near correction for F_{3},

Figure 77:

the new hyperopic
distance correction at D_{3}
shown with reversed light
as a magnifier (converging lens)

Figure 78:

distance error at G_{3}
without removing
its correction at D_{3}
creates a near correction for F_{3},
when this near correction
lies at B
this can represent
a new myopic distance error
at B
or "ocular accommodation" at B

Figure 79:

$\mathrm{JF}_{3}{ }^{\prime} \| \mathrm{EB}$

Figure 80:

the total axial magnification
of near correction
produced by both
converging elements
at D_{3} (at B) and D_{2}
equals that produced as if
all convergence occurred
at the single axial point D_{e} so that the axial magnification of near correction factor equals

$\frac{\mathrm{F}^{\mathrm{T}} \mathrm{B}}{\mathrm{F}^{\mathrm{T}}}$

$\underline{D}_{2} g=\quad \underline{D}_{e} \mathrm{q}$
$\mathrm{D}_{2} \mathrm{~F}^{\mathrm{T}} \quad \mathrm{D}_{e} \mathrm{~F}^{\mathrm{T}}$
$\frac{\mathrm{D}_{2} \mathrm{~g}}{\mathrm{D}_{2} \mathrm{~F}_{3}},=\frac{\mathrm{Bi}}{\mathrm{BF}_{3}}$,
$\mathrm{D}_{2} \mathrm{~F}^{\mathrm{T}} \underset{\left(\mathrm{D}_{e} \mathrm{~F}\right)}{\left(\mathrm{D}^{\mathrm{T}}\right)}=\mathrm{D}_{2} \mathrm{~F}_{3}, \stackrel{(\mathrm{Bj})}{\left(\mathrm{BF}_{3}{ }^{\prime}\right)}$
$\frac{\mathrm{D}_{e} \mathrm{q}}{\mathrm{D}_{e} \mathrm{~F}^{\mathrm{T}}}=\frac{\mathrm{D}_{2} \mathrm{~F}_{3},}{\mathrm{D}_{2} \mathrm{~F}^{\mathrm{T}}} \quad \underline{\mathrm{Bj}} \quad \underset{\mathrm{BF}_{3}}{ }$,
$\frac{1}{\mathrm{D}_{e} \mathrm{~F}^{\mathrm{T}}}=\frac{\mathrm{D}_{2} \mathrm{~F}_{3},}{\mathrm{D}_{2} \mathrm{~F}^{\mathrm{T}}} \quad \begin{array}{lll}\mathrm{BF}_{3}, & \underline{\mathrm{Bj}} & \underline{D_{e}}{ }^{\mathrm{q}}\end{array}$

$$
=\frac{\mathrm{D}_{2} \mathrm{~F}_{3}}{\mathrm{D}_{2} \mathrm{~F}^{\mathrm{T}}} \quad \frac{1}{\mathrm{BF}_{3}^{\prime}}
$$

[^0]: $\triangle \mathrm{ANN}^{\prime} \cong \triangle \mathrm{AQG}$

