<u>Axial Magnification from Distance and Near</u> <u>Corrections</u>

Gregg Baldwin, OD gbaldwinod@gmail.com US copyright filed 3/22/17

Reference:

Isaac Barrows Optical Lectures, 1667; Translated by H.C. Fay Edited by A.G. Bennett Publisher: The Worshipful Company of Spectacle Makers; London, England; 1987 ISBN # 0-951-2217-0-1

Introduction

Equal arcs along a circle subtend equal angles along that circle. Therefore, certain triangles within a circle can be shown to have the same shape, with their sides forming ratio equalities. Cyclic quadrilaterals can then describe equalities with multiple ratios, and these multivariable relationships can be used to find triangles with other triangles. This plane geometry approach was used by Isaac Barrow in 1667 to describe tangential refraction along a line and at a circle, without trigonometry, algebra, or calculus. It is particularly suited for clinicians in the field of low vision and ophthalmic optics, since it requires no math background beyond high school plane geometry, and encourages a spatial understanding devoid of sign convention and jargon. For those clinicians wishing to have more than a working knowledge of the subject of

axial magnification, I have drawn a progression of geometric figures to cover the necessary preliminary concepts, each building on the previous, with labeled points maintaining their significance until noted otherwise. Axial magnification is presented only after a thorough spatial representation of tangential refraction along a line and a circle. In order to visualize the relevant axial ratio equalities involved using triangles, the optic axis is then represented as a circle of infinite radius, and the sign convention remains unnecessary.

Figure 1:

given a circle with diameter EU and center N

Figure 2:

with *any* FJ || SD:

 \sim SF = \sim JD

 $\angle FDS = \angle DFJ$

when $\angle JFR = \angle SDE$:

 $FR \parallel ED$

 \sim EF = \sim RD

 \sim EF - \sim SF = \sim RD - \sim DJ

 $\sim ES = \sim RJ$

Equal angles along a circle subtend equal arcs along that circle

therefore, an angle along any circle can be defined in terms of subtended arc and diameter

∠JFR = ~<u>RJ</u> ΕŪ

triangles need only two equal angles to be the same shape, (or \cong).

Figure 3:

 $FJ \parallel SD$

 \sim SF = \sim JD

 $\Delta EJD \cong \Delta DFI$

 $\frac{FD}{FI} = \frac{JE}{JD}$

Figure 4:

 $\Delta EJS \cong \Delta EDI$

 $\frac{\underline{EI}}{\underline{ED}} = \frac{\underline{ES}}{\underline{EJ}}$

 $\frac{FD.EI}{FI.ED} = \frac{JE.ES}{JD.EJ} = \frac{SE}{SF}$

 $\frac{IE}{IF} = \frac{SE.DE}{SF.DF}$

which describes an important property of *any* cyclic quadrilateral SEDF

Figure 5:

 $LD \parallel FE$

 $\frac{DE}{DF} = \frac{LF}{LE}$

 $\frac{IE}{IF} = \frac{SE.LF}{SF.LE}$

 $\frac{FE}{FI} = \frac{SE.LF + SF.LE}{SF.LE}$

Figure 6:

 $LD \parallel FE$

 $\sim EL = \sim FD$

 $\Delta LSE \cong \Delta FSI$

 $LS = \frac{FS.LE}{FI}$

FE.LS = SE.LF + SF.LE

which describes an important property of *any* cyclic quadrilateral SELF

Figure 7:

∠KNU = ∠MDH

~ <u>UK</u> :	= ~ <u>MH</u> =	~ <u>MH</u>	=
UN	MD	UE	

 $\frac{2 (\sim UM)}{UE} = \frac{2(\sim UM)}{2(UN)}$

∠KNU = 2∠MEU

 $\sim UK = \sim UM$

let $K \Rightarrow N$ and $D \Rightarrow H$:

Figure 8:

~ <u>UK</u> = UN	$\sim \underline{MH} = MD$		∠MEH
~ <u>UK</u> = UN	∠MNU		
<u>2(~UK)</u> UN	= ∠MNH	$I = \pi$	

 $AK \geq NP \parallel AK$

 $\angle \text{NAK} = \sim \frac{\text{NPK}}{\text{NU}} \le \sim \frac{\text{NU}}{\text{NU}} = \frac{\pi}{2}$

 $AK.NP = NK^2 - NA^2$

 $BK^2 - BA^2 = AK^2 - 2(AK)AB =$

US CODYRIGHT FILE OD

Figure 10:

 $\begin{array}{rcl} NK^2 &=& NA^2 \,+\, AK^2 \,-\, \\ && 2(AK)NA.\underline{UK}\\ && UN \end{array}$

 $\Delta KUN \cong \Delta BAN$

 $NP = AK - 2(NA)\underline{AB}$

 $NK^2 = NA^2 + AK.NP$

NK.AP = NA.KP + AK.NP

Figure 11:

 $BK^2 - BA^2 = NK^2 - NA^2 = CK^2$

Figure 12:

 $\frac{NK}{NA} = \frac{NK}{NC} = \frac{OB}{OA} = \frac{TK}{TB}$

 $\frac{CK^2}{CN^2} = \frac{AB^2}{AO^2} = \frac{BK^2}{BT^2} = \frac{CK^2 + AB^2}{CN^2 + AO^2}$

 $BT^2 = CN^2 + AO^2$

because:

BT = NY

given ΔBAO use ΔKBT to find ΔYBN and use ΔYBN to find ΔKBT

Figure 13:

 $NP \, \geq \, AK \parallel NP$

 $\angle \text{NAK} = \sim \frac{\text{NUK}}{\text{NU}} \ge \sim \frac{\text{NU}}{\text{NU}} = \frac{\pi}{2}$

NK.AP = NA.KP + AK.NP
NK² = NA² + AK.NP
NP = AK + 2(NA)AB
AN

$$\Delta$$
KUN $\cong \Delta$ GPK $\cong \Delta$ BAN
NK² = NA² + AK² +
2(AK)NA.UK
UN

 $AK.NP = NK^2 - NA^2$

 $BK^2 - BA^2 = NK^2 - NA^2 = CK^2$

Figure 16:

 $\frac{NK}{NA} = \frac{NK}{NC} = \frac{OB}{OA} = \frac{WB}{WK}$

 $\frac{CK^2}{CN^2} = \frac{AB^2}{AO^2} = \frac{KB^2}{KW^2} = \frac{CK^2 + AB^2}{CN^2 + AO^2}$ $KW^2 = CN^2 + AO^2$ because: $KB^2 = CK^2 + AB^2$ $KW^2 = CN^2 + AO^2$ $= AN^2 + AO^2$ $= BA^2 + BN^2 + BO^2 - BA^2$ $= YN^2$

KW = YN

given Δ BAO use Δ BKW to find Δ YBN and use Δ YBN to find Δ BKW

with NK constant

let circle NPKA shrink and rotate counter-clockwise around N so that:

 $U \Rightarrow K$, and $\angle NAK \Rightarrow \angle NBK = \frac{\pi}{2}$

or, with NA constant let circle NPKA expand and rotate clockwise around N so that:

 $K \Rightarrow U$, and $\angle NAK \Rightarrow \angle NBK = \frac{\pi}{2}$ <u>NK</u> = <u>NK</u> = <u>WB</u>

WK

KW = YN

NC

NA

Figure 18:

with either NK or NA constant

 $\begin{array}{ll} \text{as NU} \Rightarrow & \infty \\ \textbf{\angle}\text{NAK} \Rightarrow & \pi \end{array}$

 $\frac{(KW)}{(OA)} = \frac{NK}{NA} = \frac{NK}{NC} = \frac{OB}{OA} = \frac{WB}{WK}$

KW (=OB) = YN

Figure 19:

with NK constant let circle NPKA expand and rotate clockwise around N so that:

 $A \Rightarrow K$

or, with NA constant let circle NPKA shrink and rotate counter-clockwise around N so that:

 $K \Rightarrow A$

 $\frac{NK}{NA} = \frac{NK}{NC} = \frac{OB}{OA} = \frac{WB}{WK}$

KW = YN

Figure 20:

keeping only: ABCKNOWY:

when $\Delta KNC \cong \Delta ANB$:

$$\frac{NK}{NC} = \frac{NA}{NB} = \frac{NC}{NB} = \frac{NS}{NC}$$

$$\frac{NK}{NB} = \frac{GN}{GP} = \frac{NK + NB}{NK}$$

$$\frac{NK}{NB} = 1 + \frac{1}{NK/NB} = 1 + \frac{1}{1 + \dots}$$

$$\frac{NK}{NB} = \varphi$$

$$\frac{NB}{NK} = \varphi - 1$$

 $\frac{NK}{NA} = \frac{NK}{NC} = \frac{OB}{OA} = \frac{WB}{WK}$

KW = YN

Note that there is no length relative to itself, ("unit length"), that will measure all finite lengths

Figure 23:

$\underline{QX} =$	<u>KB</u> =	<u>K'B</u> =	QX
EN	YN	YN'	E'N'

only one N'K'X exists for NKX because only one E'N' equals EN

with Δ BAX constant only one Δ XNN' exists for Δ OAB

in order for EN to equal E'N' as N' approaches N both EN and E'N' must rotate around Y until they superimpose

therefore, with Δ BAX constant as N' approaches N Δ OAB (or <u>NK</u>) must change NA

keeping only: ABEKK'NN'OWXY:

LH \parallel ND

 $LH \ > NF > NE$

holds true as:

 $H \Rightarrow E$

 $CQ \parallel ES$

 $CQ \ > \ EG \ > \ EN$

holds true as $Q \Rightarrow N$

X = Z when:

$\frac{BN}{BY} = \frac{RT}{RY}$				
<u>BN</u> ² =	= <u>RT</u>	= <u>YE</u>	=	

 $\frac{BN^2}{BY^2} = \frac{RT}{BY} = \frac{YE}{YN} = \frac{KX}{KN}$

Figure 27:

keeping only: ABEQKNOTWYZ:

given Δ YBN, find Δ YBQ using:

 $\Delta YBN \cong \Delta NYT \cong \Delta NTE$

given Δ YBQ, find Δ YBN by making:

EY = NF

which occurs when ~EN lies on a circle concentric with circle YFBQ

because:

DY = DF

 $\Delta EDY = \Delta NDF$

EY = NF

Figure 29:

 $\sim NS = \sim NK$

 $\Delta N_{\circ}NK \cong \Delta KNA$

\mathbb{R}	=	<u>NN0</u>	=	<u>NN</u> 0	=	<u>NK</u>
		GG₀		NK		NA

wavefront GoNo refracts into wavefront GN along GoN, because it travels GoG in the same time it travels NoN

Figure 30:

If $\mathbb{R} = \underline{OB}$ and KW = YN:

$$\mathbb{R} = \frac{\mathrm{NK}}{\mathrm{NA}}$$

and Z is the clear image of object A refracted at N along BN

given $\triangle BAO$:

use ΔBKW or ΔQBY to find ΔBNY

use ΔBNY to find ΔBKW or ΔQBY

Figure 31:

keeping only: ABKNXZ:

 $\Delta KNA \cong \Delta OCP$

 $\mathbb{R} = \frac{\mathrm{NK}}{\mathrm{NA}} = \frac{\mathrm{N'K'}}{\mathrm{N'A}} = \frac{\mathrm{CO}}{\mathrm{CP}}$

Figure 32:

 $\Delta ANN' \cong \Delta AQG$

Figure 33:

Figure 34:

the virtual object A can not be projected on a screen due to refraction at BN

 $\Delta XNN' \cong \Delta XFE$ the virtual image (Z) can not be projected on a screen

Figure 36:

the real image (Z) can be projected on a screen

$$\frac{AG + AN'}{2AN'} = \frac{QG + NN'}{2NN'}$$
$$\frac{XE + XN'}{2XN'} = \frac{EF + NN'}{2NN'}$$
$$\frac{QG + NN'}{EF + NN'} = (\frac{AG + AN'}{2AN'}) \frac{2XN'}{(XE + XN')}$$

RJ = FN'

as N' \Rightarrow N:

 $X \Rightarrow Z$, and $\sim DJ \Rightarrow DJ$

so that:

 $\frac{DS}{JI} \Rightarrow \frac{CO}{CP}$ $\frac{JI}{JN} \Rightarrow \frac{NP}{NC}$ $DN \Rightarrow NC$

 $\frac{\mathrm{DN}}{\mathrm{DS}} \; \stackrel{\Rightarrow}{\rightarrow} \; \frac{\mathrm{NC}}{\mathrm{NO}}$

 $\frac{\text{ND}}{\text{NJ}} \ \, \Rightarrow \ \, \frac{\text{NP}}{\text{NO}} \ \, \frac{\text{CO}}{\text{CP}}$

thus, as N' \Rightarrow N and X \Rightarrow Z:

 $\frac{\sim QG + \sim NN'}{\sim EF + \sim NN'} \Rightarrow \frac{QG + NN'}{EF + NN'} \Rightarrow$

AO ZN AN ZP

and:

$$\frac{\sim QG + \sim NN'}{\sim EF + \sim NN'} = \frac{2(\sim ND)}{2(\sim NJ)} \Rightarrow$$

 $\frac{\text{ND}}{\text{NJ}} \quad \Rightarrow \quad \frac{\text{NP}}{\text{NO}} \; \frac{\text{CO}}{\text{CP}}$

Figure 39:

keeping only: ABKNXZCPO and ℝ:

 $NT \parallel CO$

 $NW \parallel CP$

when X = Z lies along

 $\frac{AO}{AN} \frac{ZN}{ZP} = \frac{CO}{NT} \frac{NW}{CP}$

when $\Delta WNT \cong \Delta PNO$, NW > NT

and

 $\frac{AO}{AN}\frac{ZN}{ZP} = \frac{NP}{NO}\frac{CO}{CP}$

so if:

 $NT \parallel CO$

 $NW \parallel CP$

and $\Delta WNT \cong \Delta PNO$:

 $\mathbb{R} = \frac{CO}{CP}$

and Z is the clear image of object A refracted at N along ~BN

Figure 42:

$\frac{CY}{CN} = \frac{CN}{CS} = \frac{CY + CN}{CN + CS} = \frac{NY}{NS}$
$\frac{AO}{AN} \frac{ZN}{ZP} = \frac{SC}{SN} \frac{ZN}{ZP} = \frac{NC}{NY} \frac{ZN}{ZP} =$
$\frac{NC}{NY} \frac{YN}{YC} = \frac{CN}{CY}$
$\frac{CO}{CP} \frac{NP}{NO} = \frac{LY}{LN} \frac{PN}{PC} = \frac{QN}{QY} \frac{PN}{PC} =$
$\frac{QN(ZN)}{QY(ZY)} = \frac{CN}{CY}$

US CODYTIGHT FIRE 312173

Figure 43:

NT \parallel CO

 $NW \parallel CP$

 $\Delta WNT \cong \Delta PNO$

 \angle NWT = \angle NPO = \angle NCO

 $\Delta \text{CPN} \cong \Delta \text{COA}$

 $\Delta ACN \cong \Delta NCZ$ for all N

keeping:

$\mathbb R$	=	<u>CO</u>	=	<u>N0</u>	<u>A0</u>	ZN
		CP		NP	AN	ZP

constant as $N \Rightarrow B$:

 $\frac{BC}{BC} \frac{AC}{AB} \frac{ZB}{ZC} \Rightarrow \mathbb{R}$

Figure 45:

"axial" refraction can be described along a circle of infinite radius

draw CDL so:

AL \parallel ZB so:

 $\Delta ACB \cong \Delta ZCD$ and:

 $\frac{AC}{AB} \frac{ZB}{ZC} = \frac{ZC}{ZD} \frac{ZB}{ZC} = \frac{ZB}{ZD}$

so as the radius $\Rightarrow \infty$

 $\frac{ZB}{ZD} \quad \Rightarrow \quad \mathbb{R}$

Figure 46:

H C BN E
H C BN E
H C BN I

 $HZ \parallel CL$

 $\frac{ZB}{ZD} = \frac{HB}{HC}$

 $\sim AZ = \sim BL$

 $\sim ZC = \sim LJ$

 $\sim AC = \sim BJ$

$AJ \ \parallel CB$

 $\Delta HBZ \cong \Delta HJC$

when Δ HJC = Δ IAB:

 $\frac{\mathrm{BI}}{\mathrm{ZH}} = \frac{\mathrm{AI}}{\mathrm{BH}}$

BI(BH) = ZH(AI)

Figure 47:

 Δ HCZ \cong Δ HJB \cong Δ BAZ

Figure 48:

 $\Delta HCZ \cong \Delta HJB \cong \Delta BAZ$

 $\frac{\text{HC}}{\text{HZ}} = \frac{\text{BA}}{\text{BZ}}$

as the radius $\Rightarrow \infty$

 $\frac{1}{BA} = \frac{\mathbb{R}}{BZ} + \frac{\mathbb{R}}{HB}$

ZB = HZ + HB

 $\frac{\mathbb{R}}{HB} = \frac{1}{BA} + \frac{\mathbb{R}}{BZ}$

A	H	Z	С	BN
Н	А	Z	С	BN
HB	= HZ	+ ZB		

 $\frac{\mathbb{R}}{\mathrm{BZ}} = \frac{1}{\mathrm{BA}} + \frac{\mathbb{R}}{\mathrm{HB}}$

Figure 49:

keeping only: ZAHCBNI and \mathbb{R} :

as $\angle SFG = \angle GFJ \Rightarrow 0$

Figure 50:

 $\begin{array}{lll} \underline{\theta} & \Rightarrow & \underline{\sim}LD/GD \\ \alpha & & \overline{\sim}YG/GD \end{array} \quad \text{as} \quad P \Rightarrow F \end{array}$

therefore, $\frac{\theta}{\alpha} \Rightarrow \frac{FD}{FG}$

changing TS = TG = TQso rays remain afocal:

Figure 51:

as $\angle SFG = \angle GFJ \Rightarrow 0$

 $\begin{array}{ccc} \underline{\theta} & \Rightarrow & \underline{FD} \\ \alpha & & FG \end{array}$

as $\angle SFG = \angle GFJ \Rightarrow 0$

$\frac{\theta}{\alpha} \Rightarrow$	<u>~LD/0</u> ~YG/0		as	Р	⇒	F
therefo	ore, <u>θ</u> α	⇒	<u>FD</u> FG			

changing TS = TG = TQso rays remain afocal:

as $\angle SFG = \angle GFJ \Rightarrow 0$

 $\begin{array}{ccc} \underline{\theta} & \Rightarrow & \underline{FD} \\ \alpha & & FG \end{array}$

Figure 55:

keeping only: ZAHCBNIDGF and \mathbb{R} :

ZQ	=	<u>ZC</u> =	=	HC	=	$\overline{BH/\mathbb{R}}$
ZoQo		ZoCo		H₀C₀		$BH{\circ}/\mathbb{R}$

$$M \Rightarrow \underline{ZQ}_{Z_{\circ}Q_{\circ}} = \underline{BH}_{BH_{\circ}}$$

additional refraction at G (at B) creates distance refractive error with combined curvature of radius BL

the distance correction must focus (A ∞) at F

so that JF \parallel BE

since the distance correction at D moves Z to H rays leaving G after this correction are afocal

Figure 60:

 $M = \underline{BH} \quad \underline{FD} \\ BH_{\circ} \quad \overline{FB}$

 $\Delta EBH \cong \Delta EJL$

when E is at H_o:

 $\Delta EJL = \Delta I_{\circ}FB$ so:

 $M = \frac{FB}{FI_{\circ}} \frac{FD}{FB}$

measure $M = \frac{BH}{BH_{\circ}} \frac{FD}{FB}$

by measuring FD and BD to find FB,

and by measuring BL to find

 $\frac{\mathbb{R}}{\mathrm{BE}} = \frac{1}{\mathrm{EL}} = \frac{\mathbb{R} - 1}{\mathrm{BL}}$

in order to calculate BH using:

note that the condition producing a virtual image at H:

 $\frac{1}{BF} = \frac{\mathbb{R}}{BE} + \frac{\mathbb{R}}{BH}$

is meaningless when considering the focused axial image size magnification $\frac{BH}{BH_{\circ}}$

when the standard image is real.

Figure 61:

keeping only: ZAHCBNDGFEL and \mathbb{R} :

when a light source at S focused towards ∞ at D tilts up the reflection off a surface at H observed at S of its unfocused off-axis image moves up or down

adding possible distance corrections with known values of FD at D the proper distance correction

can be found which moves the focused image of S on axis at H and eliminates this movement

Figure 62:

BL is found by changing BX to clearly forms reflected image V of light Source T: S L B ×

BL Is found by changing BX to clearly focus the reflected image V of light source T

Figure 63:

make $T \Rightarrow X$ so that 2BU \Rightarrow BL and $\angle NBU \Rightarrow \frac{\pi}{2}$ so that:

XT	$\rightarrow \underline{UX}$	$\rightarrow \underline{2UX}$	← <u>2VW</u>
XW	UB	BL	BL

with a very small XT measure XW and VW to approximate BL

Figure 64:

keeping only: ZAHCBNDFGEL and \mathbb{R} :

using BH_o as the chosen ocular standard where:

 $\mathbb{R} = \frac{H_{\circ}B}{H_{\circ}C_{\circ}} = \frac{HB}{HC} = \frac{EB}{EL} = \frac{4}{3}$

and $\underline{\mathbb{R}}_{BH_{o}} = 60$ diopters

(where a diopter is a unit of inverse meter length)

only the corneal component Kof $\underline{\mathbb{R}}_{}$ can be approximated with BE BL from the reflection off B

when its deviation from the standard 42 is assumed to equal the deviation of the total $\frac{\mathbb{R}}{BE}$

from its standard of 60:

K + (42 - K) = 42

 $\frac{\mathbb{R}}{\mathrm{BE}} + (42 - \mathbf{K}) = 60$

 $\frac{\mathbb{R}}{\mathrm{BE}} = K + 18$

and since:

 $M = \underline{\mathbb{R}}$ <u>BH</u>_o <u>BH</u> <u>FD</u> <u>BH</u>_o <u>BH</u> <u>FD</u>

 $M = \frac{60}{\frac{\mathbb{R}}{BE} \pm \frac{1}{BF}} \quad (FD)$

Figure 65:

when the front surface of a spectacle lens that corrects distance refractive error is not flat it is convex and produces additional axial afocal angular magnification

placing t at D:

 $M = \frac{BH}{BH_{\circ}} \frac{FD}{FB} \frac{fq}{ft}$

In summary:

axial magnification of distance correction equals:

 $M = \underline{BH} \quad \underline{FD} \quad \underline{fq} \\ BH_{\circ} \quad FB \quad ft$

where:

 $\underline{BH}_{BH_{o}}$ = axial corrected image $\overline{BH_{o}}$ size magnification

and:

 $\begin{array}{rcl} \underline{FD} & \underline{fq} & = & axial a focal angular \\ \overline{FB} & ft & & magnification of \\ & & distance correction \end{array}$

 $\frac{FD}{FB}$ = "power factor" FB

```
\frac{fq}{ft} = "shape factor"
```


Figure 66:

An H 5 F2 EZ BG2 JF211EB

adding new myopic distance error at G_2 (at B)

 $JF_2 ~\|~ EB$

Figure 67:

the new myopic distance correction at D_2 moves Z to H

and retinal image size magnification remains unchanged:

<u>BH</u> BH₀

the new myopic distance correction at D_2 produces the additional axial afocal angular magnification factor

<u>F2 D2</u> F2B

removing the new myopic distance correction at D_2 using a magnifier (converging lens) creates a near correction for F_2 (shown with reversed light)

this near correction removes the axial afocal angular magnification of distance correction factor of

 $\frac{F_2D_2}{F_2B}$

by the addition of the axial magnification of near correction factor of

 $\frac{F_2B}{F_2D_2}$

when an object at a standard distance Fs is moved to F_2

Figure 72:

the near object subtense magnification equals

$\frac{\theta}{\alpha}$		<u>~gFs/]</u> ~eFs/]					
as	yF ₂	= xF	Fs =	⇒ 0:			
<u>θ</u>	\Rightarrow	wFs	=	wFs	=	<u>BFs</u>	
α		xFs					

multiplying this factor by the axial magnification of near correction for F_2 produces:

 $\begin{array}{cccc} \underline{F_2B} & \underline{BFs} & = & \underline{BFs} \\ F_2D_2 & \overline{BF_2} & & F_2D_2 \end{array}$

adding new hyperopic distance error at G_3 (at B)

 $JF_3 \hspace{0.1 cm} \parallel \hspace{0.1 cm} EB$

A (B) F3

the new hyperopic distance correction at D_3 moves Z to H

and retinal image size magnification remains unchanged:

<u>BH</u> BH₀

100 00 (B) 63 F3 D3

the new hyperopic distance correction at D_3 produces the additional axial afocal angular magnification factor

<u>F₃ D₃</u> F₃ B

co E (B) D3 F3

removing the new hyperopic distance *error* at G_3 without removing its correction at D_3 creates a near correction for F_3 '

00 ; F3 Pz

the new hyperopic distance correction at D_3 shown with reversed light as a magnifier (converging lens)

Figure 78:

removing the new hyperopic distance *error* at G_3 without removing its correction at D_3 creates a near correction for F_3 '

when this near correction lies at B this can represent a new myopic distance error at B or "ocular accommodation" at B

Figure 80:

the total axial magnification of near correction produced by both converging elements at D_3 (at B) and D_2 equals that produced <u>as if</u> all convergence occurred at the single axial point D_e so that the axial magnification of near correction factor equals

 $F^{T}B$ $F^{T}D_{e}$

 $\underline{D}_2 \underline{g} =$ $D_e q$ D_2F^T $D_e F^T$ $\frac{D_2g}{D_2F_3} =$ <u>Bj</u> BF₃' D_2F^T ($\underline{D}_e\underline{q}$) = D_2F_3 ' (\underline{Bj}) $(\mathbf{D}_{e}\mathbf{F}^{T})$ (BF_3') $\frac{\mathbf{D}_{e}\mathbf{q}}{\mathbf{D}_{e}\mathbf{F}^{\mathrm{T}}} =$ D_2F_3 <u>Bj</u> BF₃' D_2F^T $\begin{array}{ccc} \underline{1} & = & \underline{D_2F_3'} & \underline{Bj} & \underline{1} \\ \overline{D_eF^T} & D_2F^T & BF_3' & D_eq \end{array}$ $= \frac{D_2F_3'}{D_2F^T} \frac{1}{BF_3'}$

