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Introduction 
 

Equal arcs along a circle subtend equal angles 

along that circle. Therefore, certain triangles 

within a circle can be shown to have the same 

shape, with their sides forming ratio equalities. 

Cyclic quadrilaterals can then describe equalities 

with multiple ratios, and these multivariable 

relationships can be used to find triangles with 

other triangles. This plane geometry approach 

was used by Isaac Barrow in 1667 to describe 

tangential refraction along a line and at a circle, 

without trigonometry, algebra, or calculus. It is 

particularly suited for clinicians in the field of 

low vision and ophthalmic optics, since it 

requires no math background beyond high school 

plane geometry, and encourages a spatial 

understanding devoid of sign convention and 

jargon.  For those clinicians wishing to have 

more than a working knowledge of the subject of 
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axial magnification, I have drawn a progression 

of geometric figures to cover the necessary 

preliminary concepts, each building on the 

previous, with labeled points maintaining their 

significance until noted otherwise.  Axial 

magnification is presented only after a thorough 

spatial representation of tangential refraction 

along a line and a circle. In order to visualize the 

relevant axial ratio equalities involved using 

triangles, the optic axis is then represented as a 

circle of infinite radius, and the sign convention 

remains unnecessary.   

 

Figure 1: 
 

 
 

 

given a circle with diameter EU and center N 
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Figure 2: 
 

 
 

 

with any FJ || SD: 

 

~SF  =  ~JD 

 

 

∠FDS  =  ∠DFJ 
 

 

when ∠JFR  =  ∠SDE: 

 

 

FR || ED 

 

 

~EF  =  ~RD 

 

 

~EF  -  ~SF  =  ~RD  -  ~DJ 

 

 

~ES  =  ~RJ 
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Equal angles along a circle subtend equal arcs 

along that circle 
 

therefore, an angle along any circle can be 

defined in terms of subtended arc and diameter 

 

∠JFR  =  ~RJ 
                 EU 
 

triangles need only two equal angles to be the 

same shape, (or ≅).  

 

Figure 3: 
 

 
FJ || SD 

 

~SF  =  ~JD 

 

ΔEJD  ≅  ΔDFI 

 

FD    =   JE 

FI           JD 
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Figure 4: 

 

 
 

ΔEJS  ≅  ΔEDI 

 

EI   =   ES 

ED       EJ 

 

FD.EI    =    JE.ES   =   SE 

FI.ED           JD.EJ        SF 

 

IE  =   SE.DE 

IF         SF.DF 
 

which describes an important property 

of any cyclic quadrilateral SEDF  
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Figure 5: 
 

 
 

 

LD || FE 

 

 

DE  =  LF 

DF       LE 

 

 

IE   =   SE.LF 

IF         SF.LE 

 

 

FE  =  SE.LF  +  SF.LE 

FI                  SF.LE 
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Figure 6: 

 

 

 
 

 

LD || FE 

 

 

~EL = ~FD 

 

 

ΔLSE  ≅  ΔFSI 

 

 

LS  =  FS.LE 

               FI 

 

 

FE.LS  =  SE.LF  +  SF.LE 

 

 

which describes an important property 

of any cyclic quadrilateral SELF  
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Figure 7: 

 

 

 
 

 

∠KNU  =  ∠MDH 
 

 

~UK  =  ~MH  =  ~MH   =  

  UN        MD         UE 

 

 

2 (~UM)  =  2(~UM) 

     UE             2(UN) 

 

 

∠KNU  =  2∠MEU 

 

 

~UK  =  ~UM 

 

 

let K ⇒  N and D ⇒  H: 
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Figure 8: 

 

 

 
 

 

~UK   =  ~MH  =  ~MH  =  ∠MEH 

   UN          MD        UE   

 

 

~UK  =  ∠MNU 

   UN 

 

2(~UK)  =  ∠MNH  =  π 

  UN 
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Figure 9: 

 

 
 

AK ≥  NP || AK 

 

 

∠NAK  =  ~NPK  ≤  ~NU  =  π 
                      NU           NU    2 
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NK.AP  =  NA.KP  +  AK.NP 

 

 

NK²  =  NA²  +  AK.NP 

 

 

NP  =  AK  -  2(NA)AB 

                                 AN 

 

 

ΔKUN  ≅  ΔBAN 

 

 

NK²  =  NA²  +  AK²  - 

                    2(AK)NA.UK 

                                      UN 

 

Figure 10: 

 

 
 

 

BK² - BA²  =  AK² - 2(AK)AB  = 

 

AK.NP  =  NK² - NA²  
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Figure 11: 
 

 
 

BK² - BA² = NK² - NA² = CK² 

 

Figure 12: 
 

 
 

NK  =  NK  =  OB  =  TK 

NA       NC      OA       TB 

 

 

CK²  =  AB²  =  BK²  =  CK²  +   AB² 

CN²       AO²      BT²       CN²  +   AO² 

 

BT² =  CN² +  AO² 
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because: 

 

BK² =  CK²  +  AB² 

 

BT² =  CN²  +  AO² 

        =  AN²  +  AO² 

        =  BN²  +  AB²  +  BO²  -  AB² 

        =  NY² 

 

BT  =  NY 

 

given ΔBAO 

use ΔKBT to find ΔYBN 

and use ΔYBN to find ΔKBT 

 

Figure 13: 
 

 
 

NP  ≥  AK || NP 

 

∠NAK  =  ~NUK  ≥  ~NU  =  π 
                    NU             NU    2 
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NK.AP  =  NA.KP  +  AK.NP 

 

NK²  =  NA²  +  AK.NP 

 

NP  =  AK  +  2(NA)AB 

                                 AN 

 

ΔKUN  ≅  ΔGPK ≅  ΔBAN 

 

 

NK²  =  NA²  +  AK²  + 

                    2(AK)NA.UK 

                                      UN 

 

Figure 14: 

 

 
 

 

BK² - BA²  =  AK² +  2(AK)AB  = 

 

 

AK.NP  =  NK² - NA²  
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Figure 15: 
 

 
 

 

BK² - BA² = NK² - NA² = CK² 

 

Figure 16: 
 

 
 

 

NK  =  NK  =  OB  =  WB 

NA       NC      OA      WK 
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CK²  =  AB²  =  KB²  =  CK²  +   AB² 

CN²       AO²     KW²     CN²  +   AO² 

 

KW² =  CN² +  AO² 

 

because: 

 

KB² =  CK²  +  AB² 

 

KW² =  CN²  +  AO² 

         =  AN²  +  AO² 

         =  BA²  +  BN²  +  BO²  -  BA² 

         =  YN² 

 

KW  =  YN 

 

given ΔBAO 

use ΔBKW to find ΔYBN 

and use ΔYBN to find ΔBKW 

 

 

Figure 17: 
 

 
 

 

with NK constant 
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let circle NPKA shrink 

and rotate counter-clockwise around N 

so that: 

 

U ⇒ K,  and  ∠NAK ⇒ ∠NBK  =  π 

                                                        2 

 

or, with NA constant 

let circle NPKA expand 

and rotate clockwise  

around N 

so that: 

 

K ⇒ U,  and  ∠NAK ⇒ ∠NBK  =  π 

                                                        2 

 

NK  =  NK  =  WB 

NA       NC      WK 

 

KW  =  YN 

 

Figure 18: 
 

 
 

 

with either NK or NA constant 
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as NU  ⇒   ∞ 

∠NAK  ⇒   π 
 

 

(KW) =  NK  =  NK  =  OB  =  WB 

(OA)       NA       NC     OA       WK 

 

 

KW (=OB) =  YN 

 

 

Figure 19: 
 

 

 
 

 

with NK constant 

let circle NPKA expand 

and rotate clockwise  

around N 

so that: 

 

 

A  ⇒   K 
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or, with NA constant 

let circle NPKA shrink 

and rotate counter-clockwise around N 

so that: 

 

 

K  ⇒  A 

 

 

NK  =  NK  =  OB  =  WB 

NA      NC       OA      WK 

 

 

KW  =  YN 

 

Figure 20: 
 

 

 
 

 

keeping only: 

ABCKNOWY: 

 

 

when   ΔKNC  ≅  ΔANB: 
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NK  =  NA  =  NC  =  NS 

NC       NB      NB      NC 

 

NK  =  GN  =  NK + NB 

NB       GP           NK 

 

NK   =   1  +        1         =  1  +       1         

NB                  NK/NB                 1 + ... 

 

NK  =  φ 

NB 

 

NB   =  φ  -  1 

NK 

 

Figure 21: 
 

 
 

NK   =    NK   =    OB   =   WB 

NA         NC          OA        WK 

 

KW  =  YN 
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Note that there is no length relative to itself, 

(“unit length”), that will measure all finite 

lengths 
 

 

Figure 22: 
 

 
 

OB  =  NK  =  N’K’ 

OA      NA       N’A 

 

KW  =  YN  ;     K’W’  =   YN’ 

 

KB  =  K’B 

YN      YN’ 
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Figure 23: 
 

 

 
 

 

QX  =   KB  =  K’B  =   QX 

EN        YN      YN’       E’N’ 

 

only one N’K’X exists for NKX 

because only one E’N’ equals EN 

 

with ΔBAX constant 

only one ΔXNN’ exists for ΔOAB 

 

 

in order for EN to equal E’N’  

as N’ approaches N 

both EN and E’N’ must rotate around Y until 

they superimpose 

 

therefore, with ΔBAX constant 

as N’ approaches  N 

ΔOAB (or NK) must change 

                  NA 
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Figure 24: 
 

 
 

keeping only: 

ABEKK’NN’OWXY: 

 

 

LH   ||   ND 

 

 

LH   >  NF  >  NE 

 

 

holds true as: 

 

 

H  ⇒  E     
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Figure 25: 
 

 
 

CQ  ||  ES 

 

CQ  >  EG  >  EN 

 

holds true as Q  ⇒   N 
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Figure 26: 
 

 
 

X  =  Z  when: 

 

BN  =   RT   =   RT 

BY       RY        BN 

 

BN²   =   RT   =   YE   =   KX 

BY²        BY        YN        KN 
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Figure 27: 
 

 
 

keeping only: 

ABEQKNOTWYZ: 

 

given ΔYBN, find ΔYBQ using: 

 

ΔYBN   ≅   ΔNYT  ≅   ΔNTE 
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Figure 28: 
 

 
 

 

given ΔYBQ, find ΔYBN by making: 

 

 

EY  =  NF 

 

which occurs when ~EN lies on a circle 

concentric with circle YFBQ 

 

because: 

 

DY  =  DF 

 

ΔEDY   =   ΔNDF 

 

EY  =   NF 
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Figure 29: 
 

 
 

~NS   =   ~NK 

 

ΔN๐NK   ≅   ΔKNA 

 

ℝ   =    NN๐    =    NN๐   =   NK 

            GG๐          NK         NA 

 

wavefront  G๐N๐  refracts into  

wavefront  GN  along  G๐N, 

because it travels  G๐G  

in the same time it travels  N๐N 
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Figure 30: 
 

 
 

If  ℝ  =  OB     and   KW  =  YN: 

              OA 

 

ℝ  =  NK     
         NA 

 

and  Z  is the clear image of  

object A refracted at N along BN 
 

given  ΔBAO: 

 

use  ΔBKW  or  ΔQBY  

to find  ΔBNY 

 

use  ΔBNY  to find  

ΔBKW  or  ΔQBY  
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Figure 31: 
 

 
 

keeping only: 

ABKNXZ: 

 

 

ΔKNA   ≅   ΔOCP 

 

 

ℝ  =  NK   =   N’K’  =   CO 
          NA        N’A       CP 

 

Figure 32: 
 

 
 

 

ΔANN’   ≅   ΔAQG 
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Figure 33: 
 

 
 

 

Figure 34: 

 

 
 

 

the virtual object  A  can not be  

projected on a screen 

due to refraction at BN 
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Figure 35: 
 

 
 

 

ΔXNN’   ≅   ΔXFE 

the virtual image  (Z)  can not 

be projected on a screen 

 

Figure 36: 
 

 
 

the real image  (Z) can be  

projected on a screen 
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AG  +  AN’   =    QG  +  NN’ 

     2AN’                     2NN’ 

 

XE   +   XN’    =    EF   +  NN’ 

     2XN’                      2NN’ 

 

QG  +  NN’   =  (AG + AN’)   2XN’        

EF    +  NN’        2AN’          (XE  + XN’) 

 

 

Figure 37: 
 

 
 

HD  =   QN’ 

 

RJ   =   FN’ 

 

as  N’ ⇒  N: 

 

X ⇒  Z,  and  ~DJ ⇒  DJ 

 

so that: 
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Figure 38: 

 

 
 

DS   ⇒   CO 

 JI           CP 

 

 

 JI     ⇒    NP 

JN            NC 

 

 

DN    ⇒    NC 

DS            NO 

 

 

ND    ⇒      NP    CO 

NJ              NO    CP 

 

 

thus,  as  N’  ⇒  N  and  X  ⇒  Z: 

 

 

~QG  +  ~NN’     ⇒    QG  +  NN’   ⇒ 

~EF    +  ~NN’            EF    +  NN’ 
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AO  ZN 

AN  ZP 

 

 

and: 

 

 

~QG  +  ~NN’   =   2 (~ND)   ⇒ 

~EF    +  ~NN’        2 (~NJ) 

 

 

ND    ⇒   NP  CO 

NJ           NO  CP 

 

 

Figure 39: 
 

 
 

keeping only: 

ABKNXZCPO and ℝ: 

 

 

NT  ||  CO 

 

 

NW  ||  CP 

 

 

when X  =  Z   lies along  
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both NP and CW: 

 

 

AO  ZN   =  CO  NW 

AN  ZP         NT  CP 

 

 

when  ΔWNT  ≅   ΔPNO,  NW  >  NT    

 

 

and 

 

 

AO ZN   =   NP  CO 

AN  ZP        NO  CP 

 

 

so if: 

 

 

NT || CO 

 

 

NW || CP 

  

and ΔWNT  ≅   ΔPNO: 

 

 

ℝ =  CO     

        CP 

 

and  Z  is the clear image of object 

A  refracted at  N  along  ~BN 
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Figure 40: 
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Figure 41: 
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Figure 42: 

 

 
 

 

CY  =  CN  =  CY  +  CN   =  NY 

CN      CS       CN  +  CS        NS 

 

 

AO  ZN  =  SC  ZN  =  NC  ZN   = 

AN  ZP       SN  ZP       NY  ZP 

 

 

NC  YN   =   CN 

NY   YC         CY 

 

CO  NP  =  LY  PN   =  QN  PN   = 

CP  NO       LN  PC       QY  PC 

 

QN (ZN)    =   CN 

QY (ZY)         CY 
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Figure 43: 
 

 
 

 

NT    ||   CO 

 

 

NW   ||   CP 

 

 

ΔWNT   ≅   ΔPNO 

 

 

∠NWT   =    ∠NPO   =    ∠NCO 
 

 

ΔCPN   ≅   ΔCOA 
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Figure 44: 
 

 
 

ΔACN   ≅   ΔNCZ    for all  N 

 

 

keeping: 

 

 

ℝ    =    CO   =   NO  AO  ZN 
             CP        NP  AN  ZP 

 

 

constant as  N  ⇒  B: 

 

 

BC  AC  ZB   ⇒     ℝ 

BC  AB  ZC 
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Figure 45: 
 

 
 

“axial” refraction can be described along a circle 

of infinite radius 

 

draw CDL    so: 

 

 

AL ||  ZB    so: 

 

 

ΔACB   ≅   ΔZCD    and: 

 

AC  ZB   =   ZC  ZB   =   ZB 

AB  ZC         ZD  ZC        ZD 

 

so as the radius  ⇒   ∞ 

 

ZB    ⇒    ℝ 
ZD 
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Figure 46: 
 

 
 

HZ  ||  CL 

 

 

ZB   =   HB 

ZD         HC 

 

 

~AZ   =  ~BL 

 

 

~ZC   =  ~LJ 

 

 

~AC   =  ~BJ 

 

 

AJ   ||  CB 

 

 

ΔHBZ   ≅   ΔHJC 
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when  ΔHJC   =   ΔIAB: 

 

BI    =   AI 

ZH        BH 

 

BI (BH)  =  ZH (AI) 

 

Figure 47: 
 

 

 
 

 

ΔHCZ   ≅   ΔHJB   ≅   ΔBAZ 
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Figure 48: 
 

 
 

ΔHCZ   ≅   ΔHJB   ≅   ΔBAZ 

 

HC   =   BA 

HZ         BZ 

 

as the radius   ⇒   ∞ 

 

     1            =        1             ⇒     ℝ          

HZ (BA)         HC (BZ)           HB (BZ) 

 

————————————————— 

 

       |_______|_______|________|________| 

       H          C            B            A             Z 

                                   N 

 

        ZH   =   HB  +  BZ 
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        1      =     ℝ      +    ℝ   

       BA          BZ          HB 

 

 

———————————————— 

 

 

      |_______|_______|________|________| 

      Z          H            C            B             A 

                                                N 

 

 

      ZB   =   HZ  +  HB 

 

 

      ℝ      =     1       +    ℝ   

      HB          BA          BZ 

 

 

————————————————— 

 

 

      |_______|_______|________|________| 

      A         H            Z            C            BN 

      |_______|_______|________|________|         

                  

      H         A            Z             C           BN 

 

      HB   =   HZ  +  ZB 

 

 

      ℝ       =     1      +    ℝ   

      BZ           BA          HB 
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Figure 49: 
 

keeping only: 

ZAHCBNI  and   ℝ: 

 

 

 
 

 

as  ∠SFG  =   ∠GFJ   ⇒    0 

 

Figure 50: 

 

 

 
 

 

θ   ⇒    ~LD/GD      as    P  ⇒  F 

α          ~YG/GD 
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therefore,  θ    ⇒     FD       

                 α             FG 

 

 

changing  TS  =  TG  =  TQ   

so rays remain afocal: 

 

 

Figure 51: 
 

 
 

as  ∠SFG  =   ∠GFJ   ⇒    0 

 

θ    ⇒     FD       

α            FG 
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Figure 52: 
 

 
 

 

as  ∠SFG  =   ∠GFJ   ⇒    0 
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Figure 53:  
 

 

 
 

θ   ⇒    ~LD/GD      as    P  ⇒  F 

α          ~YG/GD 

 

therefore,  θ    ⇒     FD       

                 α             FG 

 

 

changing  TS  =  TG  =  TQ   

so rays remain afocal: 
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Figure 54: 
 

 
 

as  ∠SFG  =   ∠GFJ   ⇒    0 

 

θ    ⇒     FD       

α             FG 
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Figure 55: 
 

 
 

keeping only: 

ZAHCBNIDGF  and   ℝ: 

 

 

ZQ       =    ZC     =     HC      =    BH/ℝ 

Z๐Q๐          Z๐C๐         H๐C๐        BH๐/ℝ 
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Figure 56: 
 

 
 

as  N    ⇒   B: 

 

M   ⇒    ZQ       =      BH 

              Z๐Q๐            BH๐ 
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Figure 57: 

 

 
 

additional  refraction at  G  (at B) 

creates distance refractive error 

with combined curvature  

of radius  BL 
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Figure 58: 
 

 
 

 

the distance correction must focus (A∞) at  F   

 

 

so that JF  ||  BE 
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Figure 59: 
 

 
 

since the distance correction 

at  D  moves  Z  to  H 

rays leaving  G  after this correction are afocal 
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Figure 60: 
 

 
 

 

M    =   BH    FD 

             BH๐  FB 

 

ΔEBH  ≅  ΔEJL 

 

when  E  is at  H๐: 
 

ΔEJL  =  ΔI๐FB    so: 

 

M    =    FB  FD 

              FI๐  FB 

 

measure   M    =   BH    FD 

                             BH๐  FB 
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by measuring FD  and  BD   

to find FB, 

 

and by measuring  BL  to find 

 

 ℝ    =    1    =    ℝ - 1 

BE         EL          BL 

 

in order to calculate  BH  using: 

 

 

                 E                           B 

    |_______|_______|________|________| 

    H          Z            L            G             F 

                                                        

 

    ℝ      =     1       +    ℝ   

    BE           BF          BH 

   ————————————————— 

or 

 

 

                 E                                          G 

    F           Z           H            L             B 

    |_______|_______|________|________| 

 

 

     E                                                      G 

     Z           F           H            L             B 

     |_______|_______|________|________|         

 

 

      ℝ       =     1      +    ℝ   

      BH           BF          BE               

 

 

—————————————————     
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note that the condition producing a virtual image 

at H: 

 

 

    E                        B 

     |_______|_______|________|________| 

    Z          L            G            F             H 

                                                        

 

 

      1      =      ℝ     +     ℝ   

      BF           BE           BH 

 

 

is meaningless when considering the focused 

axial image size magnification  BH 

                            BH๐ 
 

 

when the standard image is real. 
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Figure 61: 
 

 
 

keeping only: 

ZAHCBNDGFEL  and   ℝ: 

 

 

when a light source at  S 

focused towards  ∞  at  D 

tilts up 

the reflection off a surface at  H observed at  S 

of its unfocused off-axis image 

moves up or down 

 

 

adding possible distance corrections with known 

values  

of  FD  at  D 

the proper distance correction  

Gregg Baldwin, OD 

US copyright filed 3/22/17



can be found 

which moves the focused image  

of  S  on axis at  H 

and eliminates this movement 

 

 

Figure 62: 
 

 
 

BL  Is found  

by changing  BX   

to clearly focus  

the reflected image  V  

of light source  T 
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Figure 63: 
 

 

 
 

make  T   ⇒  X 

so that  2BU  ⇒  BL 

and  ∠NBU   ⇒   π 

                            2 

so that: 

 

 

XT   →  UX  →  2UX   ←  2VW 

XW       UB         BL            BL 

 

 

with a very small  XT 

measure  XW  and  VW 

to approximate  BL 
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Figure 64: 
 

 
 

keeping only: 

ZAHCBNDFGEL  and  ℝ: 

 

 

using  BH๐  as the chosen ocular standard where: 

 

 

ℝ  =   H๐B     =   HB  =  EB  =  4 

          H๐C๐         HC      EL      3 

 

 

and    ℝ        =   60 diopters 

         BH๐ 
 

 

(where a diopter is a unit of inverse  

meter length) 

 

 

only the corneal component  K  

of  ℝ      can be approximated with   

     BE 

BL  from the reflection off  B 
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when its deviation from the standard  42   

is assumed to equal the deviation  

of the total   ℝ      

                    BE 

 

 

from its standard of  60: 

 

 

K  +  (42  -  K)  =  42 

 

 

 ℝ     +   (42  -  K)  =  60 

 BE 

 

 

ℝ      =   K  +  18 
BE 

 

 

and since: 

 

 

M  =  ℝ         BH    FD 

          BH๐      ℝ     FB 

 

 

M  =         60             (FD) 

            ℝ    ±   1        (FB)     

            BE       BF 
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Figure 65: 
 

 
 

 

when the front surface of a spectacle lens that 

corrects distance refractive error is not flat 

it is convex 

and produces additional  

axial afocal angular magnification 

 

 

placing  t  at  D: 

 

 

M   =   BH    FD   fq 

            BH๐  FB    ft 

 

 

In summary: 
 

 

axial magnification of distance  

correction equals: 

 

 

M   =   BH    FD   fq 

            BH๐  FB    ft 
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where: 

 

 

BH   =  axial corrected image  

BH๐     size magnification  

 

 

and: 

 

 

FD   fq   =   axial afocal angular  

FB   ft          magnification of  

                     distance correction 

 

 

FD   =   “power factor” 

FB 

 

 

fq    =   “shape factor” 

ft 
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Figure 66: 
 

 

 
 

adding new myopic  

distance error  

at G₂  (at  B) 

 

 

JF₂  ||  EB 
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Figure 67: 
 

 
 

the new myopic distance correction 

at  D₂  moves Z  to  H 

 

 

and retinal image size magnification 

remains unchanged: 

 

BH   

BH๐ 
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Figure 68: 
 

 
 

the new myopic 

distance correction at  D₂ 

produces the additional  

axial afocal angular magnification  

factor 

 

 

F₂ D₂ 

 F₂B     
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Figure 69: 
 

  

 

 

removing the new  

myopic distance correction  

at  D₂  using a magnifier 

(converging lens)  

creates a near correction for F₂ 

(shown with reversed light) 
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Figure 70: 
 

 
 

this near correction removes the axial afocal 

angular magnification of distance correction 

factor of 

 

  F₂D₂ 

  F₂B     

 

 

by the addition of the axial magnification of near 

correction factor of 

 

 

  F₂B 

  F₂D₂ 
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Figure 71: 
 

 
 

 

when an object at  

a standard distance  Fs   

is moved to  F₂ 
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Figure 72: 
 

 
 

the near object subtense magnification equals 

 

 

θ    =    ~gFs/BFs 

α          ~eFs/BFs 

 

 

as  yF₂  =   xFs   ⇒  0: 

 

 

θ     ⇒   wFs   =    wFs   =  BFs 

α            xFs          yF₂        BF₂        

 

 

multiplying this factor  

by the axial magnification 

of near correction for F₂  produces: 

 

 

F₂B    BFs      =     BFs 

F₂D₂  BF₂                      F₂D₂  

 

 

Gregg Baldwin, OD 

US copyright filed 3/22/17



 

 

 

 

 

Figure 73: 
 

 

 
 

 

adding new hyperopic 

distance error  

at  G₃  (at  B) 

 

 

JF₃   ||   EB 

 

 

 

 

 

 

 

 

 

Gregg Baldwin, OD 

US copyright filed 3/22/17



 

 

 

 

Figure 74: 
 

 

 
 

 

the new hyperopic 

distance correction  

at  D₃  moves  Z  to  H 

 

 

and retinal image size magnification  

remains unchanged: 

 

BH       

BH๐ 
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Figure 75: 
 

 

 
 

 

the new hyperopic  

distance correction at  D₃   

produces the additional  

axial afocal angular magnification  

factor 

 

 

F₃ D₃ 

F₃ B 
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Figure 76: 
 

 

 
 

 

removing the new hyperopic 

distance error at  G₃   

without removing  

its correction at  D₃ 

creates a near correction for F₃’ 
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Figure 77: 
 

 

 
 

 

the new hyperopic 

distance correction at  D₃ 

shown with reversed light  

as a magnifier (converging lens)  
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Figure 78: 
 

 

  

 

 

removing the new hyperopic 

distance error at  G₃   

without removing  

its correction at  D₃ 

creates a near correction for F₃’ 

 

when this near correction  

lies at  B 

this can represent  

a new myopic distance error  

at  B 

or “ocular accommodation” 

at  B 
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Figure 79: 
 

  

 

JF₃’  ||  EB 

 

 

Figure 80: 
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the total axial magnification  

of near correction  

produced by both  

converging elements  

at  D₃  (at  B) and  D₂   

equals that produced as if  

all convergence occurred  

at the single axial point  Dₑ  

so that the axial magnification  

of near correction factor equals 

 

FᵀB 

FᵀDₑ 

 

D₂g     =      Dₑq 

D₂Fᵀ            DₑFᵀ 

 

D₂g     =       Bj 

D₂F₃’            BF₃’ 

 

D₂Fᵀ  (Dₑq)      =     D₂F₃’  (Bj) 

           (DₑFᵀ)                       (BF₃’) 

 

Dₑq    =      D₂F₃’      Bj 

DₑFᵀ           D₂Fᵀ      BF₃’ 

 

1         =      D₂F₃’       Bj         1       

DₑFᵀ         D₂Fᵀ        BF₃’     Dₑq 

 

 

            =      D₂F₃’       1      

                     D₂Fᵀ     BF₃’ 
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