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Introduction

Equal arcs along a circle subtend equal angles
along that circle. Therefore, certain triangles
within a circle can be shown to have the same
shape, with their sides forming ratio equalities.
Cyclic quadrilaterals can then describe equalities
with multiple ratios, and these multivariable
relationships can be used to find triangles with
other triangles. This plane geometry approach
was used by Isaac Barrow in 1667 to describe
tangential refraction along a line and at a circle,
without trigonometry, algebra, or calculus. It is
particularly suited for clinicians in the field of
low vision and ophthalmic optics, since it
requires no math background beyond high school
plane geometry, and encourages a spatial
understanding devoid of sign convention and
jargon. For those clinicians wishing to have
more than a working knowledge of the subject of
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axial magnification, | have drawn a progression
of geometric figures to cover the necessary
preliminary concepts, each building on the
previous, with labeled points maintaining their
significance until noted otherwise. Axial
magnification is presented only after a thorough
spatial representation of tangential refraction
along a line and a circle. In order to visualize the
relevant axial ratio equalities involved using
triangles, the optic axis is then represented as a
circle of infinite radius, and the sign convention
remains unnecessary.
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Equal angles along a circle subtend equal arcs
along that circle

therefore, an angle along any circle can be
defined in terms of subtended arc and diameter

ZJFR = ~R]
EU

triangles need only two equal angles to be the
same shape, (or =).
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which describes an important property
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NK.AP = NA.KP + AK.NP

NK2 = NAZz + AK.NP

NP = AK - 2(NA)AB
AN

AKUN = ABAN

NK2 = NA? + AK? -
2(AK)NA.UK
UN
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BK2-BA?2 = AK?-2(AK)AB =

AK.NP = NK2 - NA2?
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because:
BK2= CK2 + AB?2

BT2= CN2 + AQO?

ANz + AQO?

BN2 + AB? + BO? - AB?
NY?2

BT = NY

given ABAO

use AKBT to find AYBN
and use AYBN to find AKBT

Figure 13:
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NK.AP = NA.KP + AK.NP
NK2 = NAZz + AK.NP

NP = AK + 2(NA)AB
AN

AKUN = AGPK = ABAN
NK2 = NA2 + AK2 +
2(AK)NA.UK
UN

Figure 14:

BK?-BA? = AK2+ 2(AK)AB =

AK.NP = NK2 - NA2?
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CK? = AB?2 = KB? = CK? + AB?

CNz  AOz2 KW2 CN2 + AOQO?

KW2= CN2+ AQO?

because:

KB2= CK? + AB?

KW2= CN2 + AO?

= AN2 + AQ?
= BAZ + BN?2 + BO? - BA?
= YNZ2

KW = YN

given ABAO

use ABKW to find AYBN

and use AYBN to find ABKW
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let circle NPKA shrink
and rotate counter-clockwise around N
so that:

U= K, and zNAK = zZNBK

N3

or, with NA constant
let circle NPKA expand
and rotate clockwise
around N

so that:
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with NK constant

let circle NPKA expand
and rotate clockwise
around N

so that:

A > K

=3



or, with NA constant

let circle NPKA shrink

and rotate counter-clockwise around N
so that:
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Figure 20:
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NK = NA = NC = NS
NC NB NB NC
NK = GN = NK+NB
NB GP NK

NK =1+ 1 =1+
NB NK/NB
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NB

NB =¢-1




Note that there is no length relative to itself,
(“unit length”), that will measure all finite
lengths
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with ABAX constant
only one AXNN?” exists for AOAB

in order for EN to equal E’N’

as N’ approaches N

both EN and E’N’ must rotate around Y until
they superimpose

therefore, with ABAX constant

as N’ approaches N

AOAB (or NK) must change
NA
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given AYBQ, find AYBN by making:

EY = NF

which occurs when ~EN lies on a circle
concentric with circle YFBQ

because:
DY = DF
AEDY = ANDF

EY = NF
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wavefront GoNo refracts into
wavefront GN along GoN,
because it travels GoG

in the same time it travels NoN
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If R=0B and KW = YN:
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and Z is the clear image of
object A refracted at N along BN

given ABAO:

use ABKW or AQBY
to find ABNY

use ABNY to find
ABKW or AQBY
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the virtual object A can not be
projected on a screen
due to refraction at BN
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AG + AN’ = QG + NN’
2AN’ 2NN’
XE + XN° = EF + NN’
2XN’ 2NN’
QG + NN’ = (AG+AN’) 2XN’
EF + NN’ 2AN’ (XE +XN’)
Figure 37:
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thus, as N> = N and X = Z:

~QG + ~NN’ = G + NN’ =
~EF + ~NN’ EF + NN’



~QG + ~NN’ = 2(-ND) =
~EF + ~NN*  2(~NJ)
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when X = Z lies along



both NP and CW:
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and Z is the clear image of object
A refracted at N along ~BN
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“axial” refraction can be described along a circle

of infinite radius

draw CDL so:

AL | ZB so:

R

AACB = AZCD and:

AC ZB = ZC ZB = ZB
AB ZC ZDzZC ZD

so as the radius = o

/B > R
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AHBZ = AHIC




when AHJC = AIAB:

Bl = Al
ZH BH

BI (BH) = ZH (Al)
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AHCZ = AHIJB = ABAZ
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as the radius = o
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HZ + HB
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BN

HZ + ZB

HB
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as «SFG = «GFJ = 0

Figure 50:
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therefore, 6 = FD
o FG

changing TS = TG = TQ
so rays remain afocal:

Figure 51:
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the distance correction must focus (Aw) at F

so that JF || BE
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by measuring FD and BD
to find FB,

and by measuring BL to find

R =

R 1 = R-1
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1
EL BL

in order to calculate BH using:
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note that the condition producing a virtual image
at H:

E B
I | | I |
z L G F H
1 = R + R
BF BE BH

is meaningless when considering the focused
axial image size magnification BH
BHo

when the standard image is real.
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when a light source at S

focused towards o at D

tilts up

the reflection off a surface at H observed at S
of its unfocused off-axis image

moves up or down

adding possible distance corrections with known
values

of FD at D

the proper distance correction



can be found

which moves the focused image
of S onaxisat H

and eliminates this movement

Figure 62:

BL Is found

by changing BX

to clearly focus

the reflected image V
of light source T
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make T = X

so that 2BU = BL
and ZNBU = =

2
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XT — UX — 2UX « 2VW
XW  UB BL BL

with a very small XT
measure XW and VW
to approximate BL
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(where a diopter is a unit of inverse
meter length)

only the corneal component K

of R can be approximated with
BE

BL from the reflection off B



when its deviation from the standard 42
is assumed to equal the deviation
of the total R

BE

from its standard of 60:

K+ (42 - K) = 42

R_+ (42 - K) = 60

BE
R = K+ 18
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Figure 65:

when the front surface of a spectacle lens that
corrects distance refractive error is not flat

it is convex Q
and produces additional ({9’%
axial afocal angular magnification (o8 o
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M = BH FD fg
BHo FB ft
In summary:

axial magnification of distance
correction equals:

M =

98]

BH FD fq
BHo FB ft

T



where:

BH = axial corrected image
BHo.  size magnification

and:

FD fgq = axial afocal angular
FB ft magnification of
distance correction

n
O
I

“power factor”
FB

“shape factor”

=z
I
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Figure 67:

the new myopic distance correction
at D, movesZ to H

and retinal image size magnification
remains unchanged:

BH
BHo
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creates a near correction for F, >

(shown with reversed light)
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7
angular magnification of distance correction ({9 ?90
factor of G, S
L. 0,
%, 2,
(W
8,0
F.B <S’O’
<.
2
7

by the addition of the axial magnification of near
correction factor of
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the near object subtense magnification equals
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multiplying this factor
by the axial magnification
of near correction for F, produces:

F;:B BFs = BFs
F.D, BF; F2D,
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Figure 78:

removing the new hyperopic 2.
distance error at G; ev’/
without removing

its correction at D3

creates a near correction for F3’

when this near correction
liesat B

this can represent

a new myopic distance error
at B

or “ocular accommodation”
at B
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JF;’ || EB

Figure 80:




the total axial magnification

of near correction
produced by both

converging elements

at D; (at B) and D,

equals that produced as if

all convergence occurred

at the single axial point D.

so that the axial magnification
of near correction factor equals

FB
F™D.
D.g = Dg
D,FT D.FT
D.g = Bj
D,F3’ BF3’
D.FT (Dg) =
(D.FT)
D.g = DoFs’
D.FT D,FT
1 =  DyFy
D.FT D,FT
=  DoF3
D,F

D2Fs” (B])
(BF3’)

Bj

BF,’

Bi 1

BF,” D.g
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