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It is often useful to know the meridian of 
maximum axial refraction when combining the 
effects of two spherical cylinders at an oblique 
axis. To do this, we need to describe how their 
axial radii of curvature change with various 
meridional cross sections, and find expressions  
of those axial radii of curvature that are additive 
in terms of refraction. We then need to find the 
maximum sum of those expressions in terms of 
the meridional axis. 
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Meridional cross sections of a spherical cylinder 
are ellipses, (until they become parallel lines along 
the cylinder axis). Finding the axial radii of these 
ellipses would be difficult. Assuming a spherical 
cylinder is a parabolic cylinder, (and assuming 
cross sections of parabolas are parabolas until 
they become a line along the cylinder axis), allows 
for a much simpler determination of the axial radii 
of curvature of meridional cross sections.
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This course works with these assumptions in 
order to provide approximations of axial radii of 
curvature for meridional cross sections of 
spherical cylinder. It also then uses expressions 
of these axial radii of curvature that are additive 
in terms of refraction, and demonstrates how to 
find the maximum sum of those expressions in 
terms of the meridional axis. 
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With any axial radius of curvature CB, and index 
of refraction ℝ, the axial image of a distant object 
lies at H when:


ℝ = HB/HC
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The axial refractive effects of compound 
refractive surfaces at B are additive only as their 
refractive "powers," which equal:

  ℝ      =   1   =     (HB - HC)/HC   =    (ℝ - 1)

HB        HC                CB                    CB
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All parabolas have the same shape, in the same 
way that all circles have the same shape. 
However, while circles have a single (internal) 
determining constant, the radius of curvature, 
parabolas have both a determining constant 
internal and external to the curve, and can be 
defined by either.  

�7



For example, a parabola's external determining 
constant equals BK when: 

[2(SN) equals the sagitta corresponding to the sagittal 
depth SB].

SB  =  BT

BT      BK
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We can set up the necessary off-axis conditions 
to determine a parabola's axial center of 
curvature in terms of its internal determining 
constant XB, by involving ZN in the geometric 
solution for XB.
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We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the determining geometrical 
relationships axial as N ⇒ B, they should also 
depend on line NP being parallel to the axis, and 
XP being parallel to ZN.  
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Since as N ⇒ B, Z ⇒ C by definition, and 
since XP = ZN, P will remain external to 
the curve, and X can therefore not be its 
axial center of curvature, but must instead 
lie somewhere along CB. 

�11



In order to maintain ZN perpendicular to the 
parabola at N as N ⇒ B, the same geometrical 
relationships must exist that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)
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Since:


TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

We know the external determining constant BK 
equals 2(CB), and the internal determining 
constant XB equals (CB)/2. 
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Axial refracting power equals      (ℝ - 1)

                                                        CB


Since for a parabola:


SB    =  SB  =  TB

SN        TB     2(CB)


If      ℝ = 1.5


The axial refracting power of a parabola equals:


1           =       SB      =    1   

2(CB)             SN2                BK
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When 2(SO) equals the minimum sagitta of an 
oblique parabolic cylinder, and when with equal 
sagittal depth SB, 2(SV) equals the minimum 
sagitta of a more highly curved parabolic cylinder 
with a horizontal axis:
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Keeping ΔOSV constant, as we rotate circle SOG 
with variable diameter SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα
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As O' ⇒ O

SV' increases more than SO' decreases
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As V' ⇒ V

SO' increases more than SV' decreases
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Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations produce 
only minimal changes in (SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, this 
process can be taken to its limits to determine 
the meridian with minimum  (SO' + SV') using:


Limit  Δ(SO')       =          Limit  Δ  (SV')

Δθ ⇒0                               Δα ⇒0  
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However, the combined effects of refraction are 
additive only as refractive powers, 

which, when ℝ = 1.5, equal:


 SB          and       SB

(SO')2                   (SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
using:

Limit  Δ    SB       =          Limit  Δ     SB

Δθ ⇒0     (SO')2               Δα ⇒0      (SV')2


To solve this equation, all variables must be 
expressed in terms of the variables approaching 
zero,   so: 
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Limit     Δ SB(SO/SO')2   =    Limit     Δ SB(SV/SV')2

Δθ ⇒0     (SO)2                      Δα ⇒0     (SV)2


Limit      Δ (SB)sin2 θ   =   Limit      Δ (SB)sin2 α

Δθ ⇒0       (SO)2               Δα ⇒0      (SV)2


SB    Limit      Δ sin2 θ   =   SB    Limit      Δ sin2 α

SO2  Δθ ⇒0                        SV2    Δα ⇒0     
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Limit      Δ sin2 θ        

Δθ ⇒0                              SO2

--------------------    =       ----

Limit      Δ sin2 α                SV2

Δα ⇒0
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Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0

on the reference circle:

AW ≥ LD ∥ AW

∠ALD = ~AID ≥ ~AI = π

                 AI        AI

Establish the necessary functions of θ in terms of 
line segments and chords.
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θ = ~AL      ;   sin2 θ = AL2

        AI                        AI


Δ θ = ~LD   ;   sin2 Δ θ = LD2

            AI                        AI


(θ + Δ θ) = ~ALD       ;     sin2 (θ + Δ θ) = AD2

                             AI                                         AI


cos θ = IL                  ;     cos (θ + Δ θ) = DI

             AI                                                AI


sin θ = AL  = JL         ;     sin θ cos θ = JL  IL

            AI       IL                                     IL  AI


2 (sin θ cos θ) = ML      = sin 2θ

                          AI
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Then consider the following property of the cyclic 
quadrilateral circle ALDW:  AD(LW) = AL(DW) + LD(AW)  


ΔDIA  ≅  ΔEWD  ≅  ΔXLA  ;  AD2 = AL2 + LD(AW)


AW = LD + 2(AL) LX   ;   AW = LD + 2(AL) ID   

                            LA                                  IA

                  


AD2 - AL2  =  LD2 + 2(LD)(AL) ID

                                               IA
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AI [sin2(θ + Δθ) - sin2θ] = 


AI [sin2Δθ] + 2(LD)(AL)cos(θ + Δθ) =


AI [sin2Δθ] + 2(LD) [(AI)sinθ] cos(θ + Δθ)


Divide both sides by AI:


sin2(θ + Δθ) - sin2θ = sin2Δθ + 2(LD) sinθ cos(θ + Δθ)


Limit     Δ(sin2 θ)   =  2 sinθ (cos θ)  =  sin 2θ

Δθ ⇒0     ~LD
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Therefore, the meridian with the maximum combined 
effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV into 
SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  = Sj  ⊥  SV to construct:
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Sj   =  SV       ;        Sj2   =   Sj   =   SO2


SV      Sb                SV2       Sb       SV2

Similar triangles 
show that:


SO2    =    aS

SV2           aV
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Draw ad ∥  SO

Choose a circle through S and V with a variable 

diameter SV' so that FZV lies on a common chord.
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The easiest way 
t o d o t h i s 
i n v o l v e s a 
t e m p l a t e o f 
various circles, 
each wi th the 
location of their 
diameters already 
marked. 
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SV' is the meridian 
with the maximum 
combined effects 
o f r e f r a c t i o n 
because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Double-angle Method
Given constant ΔOSV:

∠FSV is constant

∠FSV + (θ + α) = π

(θ + α) Is constant


We have already shown how 
to find single angles θ + α  

so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α
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An angle on a circle 
equals its inscribed 
arc, divided by the 
a rc ' s d i ame te r. 
Since the sum of all 
angles measured 
o n a c i r c l e ' s 
circumference add 
t o π , w h e n 
measured from a 
circle's center they 
add to 2π.
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Therefore:


2(∠FSV) + 2 (θ + α) = 2π
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When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α

When aw ∥ sX, we have divided the doubled angle 2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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In Conclusion
The approximate meridian of maximum refraction 
of two crossed spherical cylinders can be 
visualized by first examining the parabolic sagitta 
of each component cylinder in various cross 
meridians using the same sagittal depth SB. 
Although the meridian with the minimum sagittal 
sum does not represent the meridian of  
maximum refractive effect, a geometrical 
determinat ion of that meridian can be 
determined once axial refractive power is 
expressed in terms of parabolic sagitta. 
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