Axial Magnification Appendix #1 Stand Magnifiers with Spectacle Adds

When D_3 lies at the spectacle plane in the form of a near spectacle correction for F_3 ' (instead of at B in the form of ocular accommodation or uncorrected myopia):

Figure #80 shows that the total axial magnification of the combined near correction, (at D_3 and D_2), equals:

 $\frac{F^{T}B}{F^{T}D_{e}} = \frac{D_{2}F_{3}}{D_{2}F^{T}} \frac{F^{T}B}{D_{3}F_{3}}$

When referenced to a standard object distance BFs, figures #71 and #72 show that the axial near object angular subtense magnification, (or "relative distance magnification"), equals

$$\frac{\theta}{\alpha} = \frac{BFs}{BF^{T}}$$

so that the total axial near magnification becomes:

 $\frac{FsB}{F^{T}D_{e}} = \frac{D_{2}F_{3}}{D_{2}F^{T}} \frac{FsB}{D_{3}F_{3}}$

Note that the converging lens at D_2 creates a virtual image at F_3 ' of the object at F^T :

The resulting virtual image enlargement equals:

 $\frac{D_2F_3'}{D_2F^T}$

Also note that the near spectacle correction for F_3 ' at D_3 creates axial near magnification of the enlarged virtual image at F_3 ' equal to:

<u>FsB</u> D₃F₃'

This illustrates the underlying principle of a stand magnifier. Its converging lens at D_2 lies at a fixed distance from its object at F^{T} and its enlarged virtual image at F_3 '. Therefore, it has a constant, "enlargement factor":

<u>D₂F₃'</u> D₂F[⊤]

as well as a constant lens to image distance:

 D_2F_3

The total near axial

magnification it produces equals that due to its required spectacle near correction at D₃:

<u>FsB</u> D₃F₃'

multiplied by the virtual image enlargement it produces:

<u>D₂F₃'</u> D₂F[⊤]