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Friedrich Schiller, in his, “Twenty Seven Letters on 
the Aesthetic Education of Mankind,” stated that 
play is the act of balancing abstract thoughts about 
what could be, which what actually is. He stated 
that it is necessary for the determination of beauty, 
which he defined as the connection between the 
actual and the ideal. It was with this sense of play 
that William Brown, PhD, introduced geometrical 
optics during my freshman year of optometry 
school in 1979. This aesthetic education provided 
for the continued construction of context out of the 
free interplay of content and form, as well as over 
four decades of fun.
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Section 1 

Geometry of the Circle 
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I begin with the circle, because we are already filled 
with ideas about how its pieces fit. For example, 
we may easily believe that parallel lines intersect it 
across equal arcs. From that we can show that 
equal arcs along a circle subtend equal angles, and 
that certain triangles within a circle therefore can 
be shown to have the same shape, with their sides 
forming ratio equalities. Quadrilaterals with corners 
along the same circle can then describe equalities 
with multiple ratios. In 1667 Isaac Barrow used this 
approach to find triangles using other triangles, 
and describe refraction along a line and a circle. 
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Figure 1:

Given a circle with diameter EU and center N:
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Any two equal arcs ~ES and ~RJ can be shown to subtend 
equal angles by drawing any two parallel lines SD and JF:


~SF = ~JD


~ES + ~SF  = ~RJ + ~JD 


~EF = ~RD


ED || RF


Figure 2:
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Since equal angles along a circle therefore 
subtend equal arcs, any angle along any circle 
can be defined in terms of its subtended arc 
and the circle's diameter. For example: 


∠RFJ = ~RJ 
                EU 
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Triangles need only two equal angles to be the same 
shape, (or ≅).


Since equal arcs subtend equal angles along a circle:


ΔEJD ≅ ΔDFI 
FD = JE  
 FI     JD 

Figure 3:
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which describes an important property of any 
cyclic quadrilateral SEDF.

~SJ = ~FD


ΔEJS ≅ ΔEDI 

EI = ES

ED   EJ


FD.EI = JE.ES = SE

FI.ED    JD.EJ    SF


IE = SE.DE 
IF     SF.DF

Figure 4:
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Figure 5:

LD || FE


DE = LF 

DF    LE


IE = SE.LF 

IF    SF.LE


       FE = SE.LF + SF.LE

FI            SF.LE
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Figure 6:
LD || FE


~EL = ~FD 


ΔLSE ≅ ΔFSI 


LS = FS.LE

        FI

FE.LS = SE.LF + SF.LE 

which describes an important property of any 
cyclic quadrilateral SELF.
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Figure 7:

∠KNU = ∠MDH


  

   ~UK = ~MH = ~MH

    UN      MD       UE


=  2(~UM)  =  2(~UM) 

         UE        2(UN)


∠KNU = 2∠MEU  
~UK = ~UM
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Figure 8:
Let K ⇒ N and D ⇒ H:
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Section 2 

Refraction Along a Line
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Figure 9:
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Figure 10:

Create right triangle NBK.


When A lies at B:


NK = NK = (OB) = WB

NA    NC    (OA)    WK


KW = YN
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Figure 11:

When A lies at K:

NK = NK = (OB) = WB

NA    NC    (OA)    WK


KW = YN = infinity

19



Figure12:

when:


SC = BW ll SC


KW = NS


NS = NS  

NC    NA


NC = NA  

NB    NB
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Figure 13:

if:    NS = NC  

       NC    NB


then:  NK = NA  

          NC    NB


          NA ll SC

          KW (= NS) = YN
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It is obvious that as A approaches K from B, the 
relative rate that YN and KW approach infinity 
does not plateau, peak, or dip. Since we have 
shown that YN = KW when A lies at a point along 
BK other than B, as well as at B, we have shown 
that YN = KW for all points A along BK. (The 
Appendix provides the Law of Cosines approach 
to further illustrate this). 
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Figure 14:

 OB = NK = N’K’

OA     NA    N’A


KW = YN


K’W’ = YN’


KB = K’B

 YN     YN’
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Figure 15:

As the equal 
lengths of EN and 
E’N’ rotate about 
Y until they 
overlap, they 
approach their 
minimum which 
also occurs when 
N’K’X’ and NKX 
overlap.
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Let X = Z when 
both NKX and 
N’K’X overlap, 
which occurs when 
EYN is the shortest 
line segment 
through Y 
connecting line QB 
to its perpendicular 
at Q. This occurs 
when: because:

Figure 16:
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Figure 17:
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Figure 18:

CQ' || ES


CQ' > EG > EN 


holds true as 


Q' ⇒ N
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Figure 19:
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Figure 20:
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Figure 21:
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Before considering refraction along a line, 
picture yourself sitting on the beach watching 
waves roll in. Notice that even when 
wavefronts far out in the ocean are traveling 
perpendicular to the beach, they become 
closer to parallel with the beach as they 
crash. On beaches that are long and sloped, 
or have many sandbars, these wavefronts all 
crash parallel to the beach, regardless of 
their orientation in the open ocean.
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Now picture yourself in a car applying brakes 
while driving. If the brakes on the front right 
wheel grip harder, the car will turn to the 
right. This is intuitive. For the same reason, 
when a wavefront hits a sandbar at an angle, 
one side of the wavefront will slow before the 
other, and this will tend to turn the wavefront 
parallel to the beach. This essentially 
represents refraction along a line.
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Figure 22:
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Figure 23:

and Z is the clear image of object A refracted at N 
along BN.

given ΔBAO:

use ΔBKW or ΔQBY to find ΔBNY.

use ΔBNY to find ΔBKW or ΔQBY.
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Section 3 

Refraction Along a Circle
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Figure 24:
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Figure 25:
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Figure 26:
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Figure 27:
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Figure 28:

40



Figure 29:

the real image (Z) can be 
projected on a screen
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Figure 30:

HD = QN’


RJ = FN’


as N’⇒ N:

X⇒ Z, and ~DJ⇒ DJ 

so that:
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Figure 31:
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Figure 32:
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Off-axis rays from any 
on-axis object A, (real 
or virtual), can not 
form a virtual on-axis 
image Z because NW 
must be less than CP 
for Z to be virtual; but 
NW must also be 
greater than NT.

Figure 33:
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Off-axis rays from any 
real on-axis object A 
can not form a real on-
axis image Z because 
NW must be greater 
than (or equal to) CP 
for Z to be real; but 
NW must also be 
greater than NT.

Figure 34:
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Off-axis rays from a virtual on-axis object A can form a real 
on-axis image Z because NW must be greater than or equal 
to CP for Z to be real; and NW must also be greater than NT. 
When WT lies along the axis, so does Z. This occurs when:

Figure 35:
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When off-axis rays from a 
virtual on-axis object A 
form a real on-axis image 
Z, this is the on-axis real 
image of the on-axis virtual 
object A at all points N 
because:

Figure 36:
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This can also be demonstrated 
by constructing:


SC/CN  =  CN/CY


Figure 37:
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Section 4 

Axial Refraction at a Circle
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Figure 38:
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AL  ll  ZB

AZ = BL


~AZ = ~BL


HZ  ll  CL

ZC = LJ


~ZC = ~LJ


~AZ + ~ZC = ~AZC

~BL + ~LJ = ~BLJ


~AZC = ~BLJ

AJ  ll  CB

Figure 39:
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HZ  ll  CL


ZB = HB

ZD    HC

IB = HZ

IA    HB

Figure 40:
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Figure 41:
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These equalities are used with the following possible sums 
resulting from the circle with infinite radius, to produce the 
conjugate foci equations:


HZ= HB + BZ    or

HB = HZ + BZ   or

BZ = HZ + HB
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Section 5 

Afocal Axial  
Angular Magnification

61



Before considering afocal axial angular 
magnification, imagine two cars driving down 
the same street. When one car passes a sign 
post, it speeds up until it reaches the next 
sign post, then slows back down to its 
original speed, which is the same speed of 
the other car. Not only will the car that sped 
up be further down the road, it will also have 
had a greater average speed during the trip. 
This effect depends on two factors. The first 
is the degree to which the car speeds up 
between the sign posts, and the second is the 
distance between those sign posts.
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This metaphor can be used to illustrate afocal 
axial angular magnification, which simply 
depends on two factors. The first is the degree 
to which light rays change between two lenses 
or refracting surfaces. The second is the 
separation of those two lenses or refracting 
surfaces. This is why a collapsible telescope 
no longer magnifies a distant object when it is 
“collapsed,” and its lenses are no longer 
separated.

63



Figure 42:

64



In figure 41, given distance refraction at ~JDE 
followed by refraction into distance at ~QGS along 
axis DGF:


as angle JFD = angle SFG, and both approach zero, 
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Figure 43:
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In figure 42, given distance refraction at ~JDE 
followed by refraction into distance at ~QGS along 
axis FDG:


as angle JFD = angle SFG, and both approach zero, 
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Section 6 

Clinical Determination of 
Axial Retinal Image Size 

Magnification 
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From figure 13, recall the 
“continued proportion” 


NS = NC

NC    NB


and notice that: 


NK =   KN + KG

NB               GP        


which equals:


NK + NB

NK

Figure 44:

ΔNBK = ΔGKP
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We have just shown that:

Since we have shown that neither NK or NB 
can measure the other length, we have shown 
that there is no length relative to itself, (“unit 
length”), that will measure all finite lengths.
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This is relevant in any discussion of 
magnification. We can either consider such 
non-measurable distances to be irrational 
numbers, which are continuing fractions, or 
we can consider “number theory” itself to 
be irrational, along with the presumption 
that anything, even a unit measurement, can 
be real defined by itself. 
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Axial retinal image size magnification is not a 
number, but rather a ratio. It therefore requires 
a standard retinal image size for comparison. 
It is fair to call any such magnification using a 
standard, which is by definition arbitrary, 
meaningless in and of itself. However, it is 
simply a tool to use for comparing 
magnifications. Such comparisons are 
meaningful and not arbitrary, because 
arbitrary standards factor out when 
comparing ratios. 
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Figure 45:

The top diagram 
references the 
standard eye. The 
bottom diagram 
references any 
eye used for 
comparison, with 
the retinal image 
size designated 
as HZ.
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In order to find the magnification M, (in this case that 
of retinal image size magnification), we need to know 
both the standard BHo, as well as BH for the eye in 
question. When a distant object is focused at Z, and 
a distance refractive error exists, Z lies at E rather 
than at H.

Figure 46:
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Measure BL to find:
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is meaningless when considering the focused axial image 
size magnification BH/BH๐ when the standard image is real.
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Figure 47:
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Figure 48:
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When the retinal image size magnification of two 
real eyes are compared, retinal image size 
magnification loses its arbitrary nature resulting 
from its presumed standard. However, that does 
not address the arbitrary assumption in this 
calculation that magnification differences 
between two eyes result solely from their front 
surfaces. This calculation is only as correct as 
that assumption. 
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Section 7 

Axial Magnification of 
Distance Correction 
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Figure 49:

Standard 
emmetropic eye:

Non-standard 
emmetropic eye:
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Figure 50:

Additional refraction 
at G (at B) creates 
distance refractive 
error with combined 
curvature of radius 
BL.
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Figure 51:

The distance 
correction must 
focus infinity (A) 
at F so that:


JF ll BE
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Figure 52:
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Figure 53:
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Note that when all the refractive error is 
due to the retina H lying at a position other 
than the standard, in other words, all the 
error is “axial” in nature, which occurs 

The magnification equals one when the 
distance correction at D lies at the 
standard eye’s front focal point.
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Figure 54:
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Section 8 

Axial Magnification of Near 
Correction 
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Figure 55:

There is no afocal 
angular 
magnification when 
object A is at the 
front focal point of 
a myopic eye,

or at distance 
with an 
emmetropic eye.

96



Figure 56:

However, a distance 
myopic correction at D 
creates afocal angular 
magnification:


         FD   <  1

FG   

and this is relative to both the myopic eye with 
object A at the myopic eye's front focal point F, 
as well as the emetropic eye with object A at 
distance.
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Figure 57: Removing the 
myopic distance 
correction at D with a 
converging lens at D 
removes this afocal 
angular magnification 
with the factor:

        FG  >  1

FD


and this magnification of near correction is 
relative to the distance corrected myope.
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(Figure 55):

or an emmetrope.

It is not relative to 
either the myope,
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Figure 58:

If additional converging power is added to the 
converging lens so that the near focal point is in focus 
for an emetropic eye, rather than the myopic eye, the 
afocal angular magnification removed with the factor:

        FG  >  1

FD

remains the same, and the reference eye is 
emetropic.
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Figure 59:

When the converging lens at D is split into two 
converging lenses:
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Figure 60:

With the same combined focus F:
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The axial magnification 
of near correction can 
be specified as that 
produced 

as if 

all convergence occurs 
at a single unknown 
axial point De 

Figure 61:

and equals:


FG  =  FB

FDe     FDe
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De can be located 
using triangles:


D₂g   =   Deq

D₂F        DeF


D₂g   =   D₁j

  D₂F₁       D₁F₁


Figure 62:
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   D₂F  Deq     =    D₂F₁  D₁j 

              DeF                    D₁F₁


      Deq   =  D₂F₁    D₁j  

         DeF       D₂F      D₁F₁


           1       =    D₂F₁      1   

             DeF          D₂F      D₁F₁


           FB       =      D₂F₁      FB   

              FDe             D₂F        D₁F₁


Figure 63:
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Figure 64:

When an object at a standard distance Fs is 
moved to F: 
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Figure 65:

The near object angular subtense magnification 
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which equals the axial near object angular 
subtense magnification. 

θ/α  ⇒         wFs  =  wFs  =  BFs

xFs        yF        BF


as  yF  =  xFs  ⇒   0

θ/α  =         ~gFs/BFs

~eFs/BFs        
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Multiplying the axial near subtense 
magnification by the axial magnification of near 
correction produces:

BFs  =  D₂F₁  BFs

  FDe      D₂F   D₁F₁
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Since the converging lens at D2 creates a 
virtual image at F1 of an object at F, so that 
the enlargement of an object at F created by 
D2 equals D2F1/D2F; when the diagram 
represents a stand magnifier with lens D2 
and stand height D2F, and the reading 
spectacle add is D1, (or the ocular 
accommodation is D1 at B), the 
magnification produced by the stand 
magnifier is its (constant) enlargement 
factor, multiplied by that produced by D1 
alone.
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The ratio describing near object axial angular 
subtense magnification:


BFs

BF


when combined with the ratio describing near 
magnification due to a single converging lens 
producing parallel light for an emmetropic eye:


FB

FD
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produces a ratio product which factors out 
the object’s actual distance to the eye, 
confirming that when a converging lens is 
used with its front focal point at the near 
object, (and therefore parallel light leaves the 
converging lens from the object), the image 
size is the same regardless of the object-to-
eye distance.
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Section 9 

Crossed Cylinders 



It is often useful to know the meridian of 
maximum axial refraction when combining the 
effects of two spherical cylinders at an oblique 
axis. To do this, we need to describe how their 
axial radii of curvature change with various 
meridional cross sections, and find expressions  
of those axial radii of curvature that are additive 
in terms of refraction. We then need to find the 
maximum sum of those expressions in terms of 
the meridional axis. 



Meridional cross sections of a spherical cylinder 
are ellipses, (until they become parallel lines 
along the cylinder axis). Finding the axial radii of 
these ellipses would be difficult. Assuming a 
spherical cylinder is a parabolic cylinder, (and 
assuming cross sections of parabolic cylinders 
are parabolas, until they become parallel lines 
along the cylinder axis), allows for a much 
simpler determination of the axial radii of 
curvature of meridional cross sections.



This section works with these assumptions in 
order to provide approximations of axial radii of 
curvature for meridional cross sections of 
spherical cylinder. It also then uses expressions 
of these axial radii of curvature that are additive 
in terms of refraction, and demonstrates how to 
find the maximum sum of those expressions in 
terms of the meridional axis. 



With any axial radius of curvature CB, and index 
of refraction ℝ, the axial image of a distant object 
lies at H when:


ℝ = HB/HC
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Figure 66:



The axial refractive effects of compound 
refractive surfaces at B are additive only as their 
refractive "powers," which equal:

  ℝ      =   1   =     (HB - HC)/HC   =    (ℝ - 1)

HB        HC                CB                    CB
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All parabolas have the same shape, in the same 
way that all circles have the same shape. 
However, while circles have a single (internal) 
determining constant, the radius of curvature, 
parabolas have both a determining constant 
internal and external to the curve, and can be 
defined by either.  
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For example, a 
parabola's 
external 
determining 
constant equals 
BK when: 

[2(SN) equals the sagitta corresponding 
to the sagittal depth SB].

SB  =  BT

BT      BK

120

Figure 67:



We can set up the 
necessary off-axis 
conditions to determine a 
parabola's axial center of 
curvature in terms of its 
internal determining 
constant XB, by involving 
ZN in the geometric 
solution for XB.
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Figure 68:



We know X lies between Z and B, since 
parabolas flatten in their periphery. 

In order to keep the 
determining geometrical 
relationships axial as N ⇒ B, 
they should also depend on 
line NP being parallel to the 
axis, and XP being parallel to 
ZN.  
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Figure 69:



Since as N ⇒ B, Z ⇒ C by definition, and 
since XP = ZN, P will remain external to 
the curve, and X can therefore not be its 
axial center of curvature, but must instead 
lie somewhere along CB. 

123



In order to maintain ZN 
perpendicular to the 
parabola at N as N ⇒ B, 
the same geometrical 
relationships must exist 
that allow for that when 
N lies at B.

In other words:


YP = YX  and

Bb = BX  so

CB = 2(XB)
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Figure 70:



Since:


TN  =   TN   =   YB  =   YB  =   TB

TB      2(TY)     2(XB)    CB     2(CB) 

We know the external determining constant BK 
equals 2(CB), and the internal determining 
constant XB equals (CB)/2. 
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Axial refracting power equals      (ℝ - 1)

                                                        CB


Since for a parabola:


SB    =  SB  =  TB

SN        TB     2(CB)


If      ℝ = 1.5


The axial refracting power of a parabola equals:


1           =       SB      =    1   

2(CB)             SN2                BK
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When 2(SO) equals the 
minimum sagitta of an 
oblique parabolic 
cylinder, and when with 
equal sagittal depth SB, 
2(SV) equals the 
minimum sagitta of a 
more highly curved 
parabolic cylinder with a 
horizontal axis:
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Figure 71:



Keeping ΔOSV constant, 
as we rotate circle SOG 
with variable diameter 
SV'O' around point S:

∠OO'G is constant 
because ∠OSG is 
constant, 


so  Δθ   =   -Δα
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Figure 72:



As O' ⇒ O

SV' increases more than SO' decreases

129

Figure 73:



As V' ⇒ V

SO' increases more than SV' decreases
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Figure 74:



Since the sum (SO' + SV') increases when either:


O' ⇒ O,   or V' ⇒ V 
 

there must be a specific SV'O' within ΔOSV 
producing a minimum sum (SO' + SV'), 

which must be near where small rotations produce 
only minimal changes in (SO' + SV').
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Since as when one term of the sum (SO' + SV') 
increases, the other always decreases, this 
process can be taken to its limits to determine 
the meridian with minimum  (SO' + SV') using:


Limit  Δ(SO')       =          Limit  Δ  (SV')

Δθ ⇒0                               Δα ⇒0  
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However, the combined effects of refraction are 
additive only as refractive powers, 

which, when ℝ = 1.5, equal:


 SB          and       SB

(SO')2                   (SV')2
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Therefore, the meridian with the maximum 
combined effects of this refraction can be found 
using:

Limit  Δ    SB       =          Limit  Δ     SB

Δθ ⇒0     (SO')2               Δα ⇒0      (SV')2


To solve this equation, all variables must be 
expressed in terms of the variables approaching 
zero,   so: 
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Limit     Δ SB(SO/SO')2   =    Limit     Δ SB(SV/SV')2

Δθ ⇒0     (SO)2                      Δα ⇒0     (SV)2


Limit      Δ (SB)sin2 θ   =   Limit      Δ (SB)sin2 α

Δθ ⇒0       (SO)2               Δα ⇒0      (SV)2


SB    Limit      Δ sin2 θ   =   SB    Limit      Δ sin2 α

SO2  Δθ ⇒0                        SV2    Δα ⇒0     
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Limit      Δ sin2 θ        

Δθ ⇒0                              SO2

--------------------    =       ----

Limit      Δ sin2 α                SV2

Δα ⇒0


136



Solve for 


Limit      Δ sin2 θ        

Δθ ⇒0

on the reference circle:

AW ≥ LD ∥ AW

∠ALD = ~AID ≥ ~AI = π

                 AI        AI

Establish the necessary functions of θ in terms of 
line segments and chords.
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Figure 75:



θ = ~AL      ;   sin2 θ = AL2

        AI                        AI


Δ θ = ~LD   ;   sin2 Δ θ = LD2

            AI                        AI


(θ + Δ θ) = ~ALD       ;     sin2 (θ + Δ θ) = AD2

                             AI                                         AI


cos θ = IL                  ;     cos (θ + Δ θ) = DI

             AI                                                AI


sin θ = AL  = JL         ;     sin θ cos θ = JL  IL

            AI       IL                                     IL  AI


2 (sin θ cos θ) = ML      = sin 2θ

                          AI
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Then consider the following property of the cyclic 
quadrilateral circle ALDW:  AD(LW) = AL(DW) + LD(AW)  


ΔDIA  ≅  ΔEWD  =  ΔXLA  ;  AD2 = AL2 + LD(AW)


AW = LD + 2(AL) LX   ;   AW = LD + 2(AL) ID   

                            LA                                  IA

                  


AD2 - AL2  =  LD2 + 2(LD)(AL) ID

                                               IA
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AI [sin2(θ + Δθ) - sin2θ] = 


AI [sin2Δθ] + 2(LD)(AL)cos(θ + Δθ) =


AI [sin2Δθ] + 2(LD) [(AI)sinθ] cos(θ + Δθ)


Divide both sides by AI:


sin2(θ + Δθ) - sin2θ = sin2Δθ + 2(LD) sinθ cos(θ + Δθ)


Limit     Δ(sin2 θ)   =  2 sinθ (cos θ)  =  sin 2θ

Δθ ⇒0     ~LD
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Therefore, the meridian with the maximum combined 
effects of refraction can be found using:


sin 2θ    =    SO2


sin 2α                SV2


The first step to solve this problem is to divide SV into 
SaV so that:


                               SO2   =   aS

                               SV2           aV
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Make SO  = Sj  ⊥  SV to construct:
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Figure 76:



Sj   =  SV       ;        Sj2   =   Sj   =   SO2


SV      Sb                SV2       Sb       SV2

Similar triangles 
show that:


SO2    =    aS

SV2           aV

143

Figure 77:



Draw ad ∥  SO

Choose a circle 
through S and V with 
a variable diameter 
SV' so that FZV lies 
on a common chord.

144

Figure 78:



The easiest way 
to do this 
involves a 
template of 
various circles, 
each with the 
location of their 
diameters already 
marked. 
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SV' is the meridian with 
the maximum 
combined effects of 
refraction because:

SO2  =  aS  =  FZ  =  FQ/2  =  FQ = sin 2θ

SV2       aV      ZV      RV/2       RV    sin 2α
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Figure 79:



Double-angle Method

Given constant ΔOSV:

∠FSV is constant

∠FSV + (θ + α) = π

(θ + α) Is constant

We have already shown 
how to find single angles 
θ + α  so that:


SO2  =  aS  = sin 2θ

SV2       aV     sin 2α


147

Figure 80:



An angle on a circle 
equals its inscribed 
arc, divided by the 
arc's diameter. 
Since the sum of all 
angles measured 
on a circle's 
circumference add 
to π, when 
measured from a 
circle's center they 
add to 2π.
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Figure 81:



Therefore:      2(∠FSV) + 2 (θ + α) = 2π
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Figure 82:



When:


SO2   =   Sj2  =  aS


SV2          SV2       aV


as drawn:
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Figure 83:



If we draw diameter XaP so:


aX = aV,   and   ∠SaP  =  2 (θ + α)
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Figure 84:



SO2   =   aS   =   ah/aX   =   sin 2θ

SV2         aX        ah/aS        sin 2α
When aw ∥ sX, we have divided the doubled angle 
2 (θ + α) = ∠SaP 

into 2θ = ∠WaP, and 2α = ∠WaS.
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Figure 85:



The approximate meridian of maximum refraction 
of two crossed spherical cylinders can be 
visualized by first examining the parabolic sagitta 
of each component cylinder in various cross 
meridians using the same sagittal depth SB. 
Although the meridian with the minimum sagittal 
sum does not represent the meridian of  
maximum refractive effect, a geometrical 
determinat ion of that meridian can be 
determined once axial refractive power is 
expressed in terms of parabolic sagitta. 
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Appendix

The Law of Cosines approach to further illustrate 
that YN = KW in figures 9 - 13:
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Figure 86:
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Figure 87: 
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Figure 88:
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Figure 89:



159



Figure 90: 
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Figure 91:
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Figure 92:
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Figure 93:
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Figure 94:

With NK constant:
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Figure 95:
With either NK or NA constant:
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Figure 96: with NK constant

let circle NPKA expand and 
rotate clockwise around N


so that:

A⇒K

or, with NA constant

let circle NPKA shrink

and rotate counter-

clockwise around N so that:

K⇒A
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