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1). prerequisite geometry 
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On a circle with 
diameter EU and 
center N:
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Two equal arcs ~SE and ~JR 
can be shown to subtend 
equal angles by drawing any 
two parallel lines SD and JF.

Since parallel lines intercept 
equal arcs across a circle, 

~SF  =  ~JD

~SE  + ~SF  =  ~JR  + ~JD 

~EF = ~RD

ED || RF,  and therefore:

∠SDE  =  ∠JFR
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Since conversely, equal angles along a 
circle subtend equal arcs, any angle 
along any circle can be defined in 
terms of its subtended arc and the 
circle's diameter. 


For example: ∠RFJ = ~RJ/EU
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∠KNU = ∠MDH 

∠MDH = ~MH/MD 

= ~MH/UE = 2(~UM)/UE

=  2∠MEU


∠KNU = ~UK/UN 

= 2(~UM)/2(UN)       

~UK = ~UM
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Let K ⇒ N and D ⇒ H:

~UK/UN = ~MH/MD

= ~MH/UE = ∠MEH


~UK/UN = ∠MNU


2(~UK)/UN = ∠MNH = π
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NS/NC = NC/NB

NK/NC = CN/CK


ΔNSC = ΔKWB = ΔKNP

NC = KP


ΔCKP = ΔBNA = ΔAOB

NA = KP 


NC = NA = OB 

NC = KB = YB


WK = NS = YN
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Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:

As N ⇒ B, WK ⇒ YN 
because:

WK/OA ⇒ NK/NA = NK/NC 

= OB/OA = WB/WK


so that:

WK ⇒ OB ⇒ YN
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Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:


As A ⇒ K, WK ⇒ YN
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Keeping only:

NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB:


As A ⇒ B, WK ⇒ YN
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We can therefore assume 
that whenever A lies on 
BK, given right triangle 
KBN, if NA = NC, and

ΔCNK ≅ ΔAOB ≅ ΔKWB

as shown, then:


WK = YN
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OB/OA = NK/NA

= N’K’/N’A


KW = YN      

K’W’ = YN’


KB/YN = K’B/YN’
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QX/EN = KB/YN

= K’B/YN’ = QX/E’N’


EN = E’N’

Only one N’K’X exists for NKX since only one 
E’N’ exists equal to EN. When EN is the 
smallest segment through Y included in the 
right angle EQN, E’ lies at E, and N’ lies at N.
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NE || GL

TY || EL

HI || NM

HI = NM

NM > NL


NL is the hypotenuse 
of right triangle NEL


NL > NE

HI > NE
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NE || GL

TY || NL

HI || EM

HI = EM

EM > EL


EL is the 
hypotenuse of 
right triangle ENL


EL > EN

HI > EN
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X = Z when EN is the 
shortest segment 
through Y included 
in right angle EQN
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In order to 
find Z given 
ΔYBN and 
NK, we must 
find E using:


ΔYBN 

≅ ΔNYT 

≅ ΔNTE
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In order to find Z given ΔYBQ, 
we must find EN so that:

right triangle ΔTYE = ΔQFN

by drawing a circle concentric 
with ⊙Y(F)BQ

around its center D

containing arc ~EN

so that YF lies on chord EN.
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Not only does: 

DY = DF, but also: 

ED = ND and therefore

ΔEDY = ΔNDF

so EY = NF


Since ΔQFN is a right 
triangle, so is ΔTYE.

Once we have found 
EN, we must also find 
NK in order to find Z.
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2). refraction along a line 
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ΔNoNK ≅ ΔKNA

because:

~NS = ~NK


Wavefront GoNo refracts 
into wavefront GN along 
GoN, because it travels 
GoG in the same time it 
travels NoN.


R = NNo/GGo 

= NNo/NK = NK/NA
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and Z is the clear image of object A 
refracted at N along BN

If R = OB/OA,  


and KW = YN:


R = NK/NA
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given ΔBAO:

use ΔBKW or ΔQBY to find ΔBNY

use ΔBNY to find ΔBKW or ΔQBY
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3). refraction along a circle 
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ΔKNA ≅ ΔOCP

R = NK/NA = N’K’/N’A = CO/CP
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ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’


Real object A
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ΔANN’ ≅ ΔAQG

AG/AN’ = QG/NN’


(AG + AN’)/2AN’  

=  (QG + NN’)/2NN’


Virtual object A

can not be projected 
on a screen due to 
refraction at BN.
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ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’


Real image at (X = Z) 
can be projected on a 
screen.
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ΔXNN’ ≅ ΔXFE

XE/XN’ = EF/NN’


(XE + XN’)/2XN’  

=  (EF + NN’)/2NN’


Virtual image at (X = Z) 
can not be projected 
on a screen.
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(AG + AN’)/2AN’  =  (QG + NN’)/2NN’

(XE + XN’)/2XN’  =  (EF + NN’)/2NN’


(QG + NN’)/(EF + NN’)  

=  [(AG + AN’)/2AN’][2XN’/(XE + XN’)]


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’)

⇒ (QG + NN’)/(EF + NN’)

⇒ (AO/AN)(ZN/ZP)
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Also, when HD = QN’  

and  RJ = FN’


(~QG + ~NN’)/(~EF + ~NN’)

=  2(~ND)/2(~NJ)  =  ~ND/~NJ


As  N’ ⇒ N,  X ⇒ Z,  and:

~DJ ⇒ line segment DJ, so:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ ND/NJ
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DS/JI = CO/CP

JI/JN = NP/NC

DN/DS = NC/NO

ND/NJ = (NP/NO)(CO/CP)


As  N’ ⇒ N,  X ⇒ Z,  and:

(~QG + ~NN’)/(~EF + ~NN’) 

⇒ (NP/NO)(CO/CP)


and therefore:

(AO/AN)(ZN/ZP) ⇒ (NP/NO)(CO/CP)
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Thus R = CO/CP, and Z, (along both NP and CW), 
is the clear image of A refracted along ~BN, when: 

NT||CO, so: 

AO/AN = CO/NT and:


NW||CP, so:

ZN/ZP = NW/CP and: 


NW/NT = NP/NO

(ΔWNT ≅ ΔPNO)
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The off-axis rays from 
any on-axis object A, 
(real or virtual), can not 
form a virtual on-axis 
image at Z because 
NW must be less than 
CP for Z to be virtual; 
but NW must also be 
greater than NT.
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The off-axis rays 
from any real on-
axis object A can 
not form a real 
on-axis image at 
Z because NW 
must be greater 
than (or equal to) 
CP for Z to be 
real; but NW 
must also be 
greater than NT.
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The off-axis rays 
from any real on-
axis object A can 
not form a real on-
axis image at Z 
because NW must 
be greater than (or 
equal to, as shown 
here) CP for Z to 
be real; but NW 
must also be 
greater than NT.
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The off-axis rays from a virtual on-axis 
object A can form a real on-axis image at 
Z, if NW is greater than CP, and WT lies 
along the axis.
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Since: 

∠NWT = ∠NPO = ∠NCO   

and NW||CP


WT lies along the axis when:


ΔNCO ≅ ΔZCP
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When off-axis rays 
from a virtual on-axis 
object A form a real 
on-axis image Z, this 
occurs at all points N 
because:

ΔACN ≅ ΔNCZ for all N
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4). refraction through a 
circle’s center 
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Keeping:


R  =  (CO/CP)  =

(NO/NP)(AO/AN)(ZN/ZP)


constant as:

 N  ⇒  B:


(BC/BC)(AC/AB)(ZB/ZC)  ⇒  R
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Refraction through a circle’s center occurs 
when N lies at B, so that an object’s ray 
from A to N lies along ABC, and an image 
ray lies along BCZ. The locations of the 
object A and image Z along the optic axis 
BC are described by the equation:


R = CO/CP = (AC/AB)(ZB/ZC) 
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If we draw A and Z along 
the optic axis BC as if it 
were a circle, and draw 
CDL so that AL || ZB:

ΔACB ≅ ΔZCD, and:

(AC/AB)(ZB/ZC)  =

(ZC/ZD)(ZB/ZC)  = 

(ZB/ZD)

so as the reference circle’s 

radius ⇒ ∞

(ZB/ZD)  ⇒  R
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AL  ll  ZB

AZ = BL

~AZ = ~BL


HZ  ll  CL

ZC = LJ

~ZC = ~LJ


~AZ + ~ZC = ~AZC

~BL + ~LJ = ~BLJ


~AZC = ~BLJ

AJ  ll  CB
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HZ  ll  CL

ZB/ZD = HB/HC

ΔHBZ ≅ ΔHJC

when ΔHJC = ΔIAB:

HC = IB, and:

IB/IA  =  HZ/HB


This results in 

Newton’s Equation  
as the reference circle’s 
radius ⇒ ∞:

(AI)(ZH) = (BI)(BH) 
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ΔHCZ ≅ ΔHJB ≅ ΔBAZ

(HC/HZ)  =  (BA/BZ)

[1/(HZ)(BA)] = [1/(HC)(BZ)]
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as the reference circle’s radius ⇒ ∞:

[1/(HZ)(BA)] = [1/(HC)(BZ)] ⇒ R/(HB)(BZ)

and the resulting possible sums occur:


HZ= HB + BZ

HB = HZ + BZ

BZ = HZ + HB


which, when multiplied by the above three 
factors, form the conjugate foci 
equations. 
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The conjugate foci equations allow for the 
effect of axial refraction at a circle to be 
expressed as the term:


 (1/HC)  =  (R/HB)


which is then additive with object 
vergence, defined as (1/BA); or image 
vergence, defined as (R/BZ).
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5). afocal angular 
magnification/minification 
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Afocal Angular Magnification 

When distance 
refraction at ~JDE 
is followed by 
refraction into 
distance at ~QGS 
along axis DGF as 
shown; 

as ∠JFD = ∠SFG, 
and both 
approach zero: 
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Afocal Angular Minification

Or when distance 
refraction at ~JDE 
is followed by 
refraction into 
distance at ~QGS 
along axis FDG, 
as shown; 

as ∠JFD = ∠SFG, 
and both 
approach zero:
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θ/α  ⇒  (~LD/GD)/(~YG/GD)  as P  ⇒  F

θ/α  ⇒  (FD/FG)   as P  ⇒  F

so that afocal axial angular 
magnification/minification equals:


FD/FG
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6). retinal image size 
magnification 
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The top diagram 
illustrates a standard 
single-surfaced eye 
with a distant object 
A, and resulting 
retinal image size 
HoZo.
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The bottom diagram 
illustrates any single-
surfaced eye with a 
distant object A, and 
resulting retinal image 
size HZ.
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As  N ⇒ B,  the retinal image size 
magnification,  ZH/ZoHo,  (relative to an 
arbitrary standard which factors out with 
subsequent comparisons), then approaches 
its axial value:


ZQ/ZoQo  =  ZC/ZoCo  =  HC/HoCo 


=  (BH/R)/(BHo/R)  =  BH/BHo
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7). axial magnification of 
distance correction 

60



Once again 
representing the optic 
axis BCZ as a circle of 
infinite radius, the 
distant object A is 
focused by the curve of 
radius BC towards the 
axial object Z, (which 
lies at the retina H 
when there is no 
distance refractive 
error).
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additional 
refraction at G (at 
B) will create 
distance refractive 
error and a 
combined single 
refractive surface 
of radius  BL.
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A distance 
correction must 
focus the distant 
object A towards 
the focal point F of 
the refractive error 
G, so that JF || BE, 
in order to move Z 
back to H.
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The distance 
correction at D:
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Since the distance 
correction at D moves 
Z to H, rays leaving G 
after this correction 
must be afocal, 
resulting in afocal axial 
angular magnification 
equaling:


FD/FG (= FD/FB)
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The (total) axial magnification of distance 
correction equals:


M  =  (BH/BHo)(FD/FB)
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ΔEBH ≅ ΔEJL


If E is at Ho, the distance refractive error is 
completely due to an axial length that is not 
standard. 


If ΔEJL ≅ ΔIoFB, then:


M  =  (FB/FIo)(FD/FB)  =  FD/FIo


There is then no (total) axial magnification of 
distance correction if the correction D lies at Io, 
the front focal point of the standard eye.
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8). axial magnification of near 
correction 
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There is no afocal axial 
angular magnification 

FD/FB when object A is 
at distance with an 
emetropic eye. 

(The refractive error at 
G, (at B), is zero; and 
the focal point F of that 
refractive error lies at 
infinity).
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There is also no afocal 
axial angular magnification 

when object A is at the 
front focal point of an 
uncorrected myopic eye.  
(The system is not afocal, 
and involves only one 
refracting element).
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As discussed, a 
distance myopic 
correction at D 
creates afocal axial 
angular minification:


FD/FG   <  1  

and this is relative to either the myopic eye 
with object A at its front focal point F, or the 
emetropic eye with object A at distance.
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Removing the 
myopic distance 
correction at D with 
a converging lens 
at D removes this 
afocal axial angular 
magnification with 
the factor:

FG/FD  >  1


and this magnification of near correction is 
relative to the distance corrected myope.
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If additional converging 
power is added to the 
converging lens so that 
the near focal point is in 
focus for an emetropic 
eye, which we then 
consider to be the 
reference eye, the 
magnification of near 
correction is still that 
which is removed with the 
factor:

        FG/FD  >  1
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9). object angular subtense 
magnification 
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When an object at a 
standard distance 
Fs is moved to F: 
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The object angular 
subtense 
magnification

equals: 

θ/α   =  (~GFs/BFs)/(~EFs/BFs)
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as    XFs  ⇒   0

the object angular subtense magnification 
approaches its axial value:


θ/α  ⇒  WFs/XFs  =  WFs/YF  =  BFs/BF

which equals the axial 

object angular subtense magnification. 
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The ratio describing axial object angular 
subtense magnification:


BFs/BF


when multiplied by the ratio describing near 
magnification due to a single converging 
lens producing parallel light for an 
emmetropic eye:


FB/FD
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produces a ratio which factors out the 
object’s actual distance to the eye, 
confirming that when a converging 
lens is used with its front focal point at 
the object, so parallel light leaves the 
converging lens from the object, the 
image size is the same regardless of 
the object-to-eye distance.
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10). stand magnifier 
magnification
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When the 
converging lens 
at D is split into 
two converging 
lenses:
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with the same 
combined 
focus F:
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the ratio describing axial near magnification 
due to a single converging lens producing 
parallel light for an emmetropic eye:


FB/FD


must be expressed as if all convergence 
occurred at a single unknown axial point De:


FB/FDe
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De can be located using 
triangles.


D₂G/D₂F  =  DeQ/DeF

     

D₂G/D₂F₁  =  D₁J/D₁F₁

D₂F(DeQ/DeF)  =  D₂F₁(D₁J/D₁F₁) 

                                

DeQ/DeF  =  (D₂F₁/D₂F)(D₁J/D₁F₁)  


1/DeF  =  (D₂F₁/D₂F)(1/D₁F₁) 


FB/FDe  =  (D₂F₁/D₂F)(FB/D₁F₁)    
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Multiplying the axial object subtense 
magnification by the axial 
magnification of near correction 
(relative to the same eye without 
refractive error) produces:


BFs/FDe  =  (D₂F₁/D₂F)(BFs/D₁F₁)
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The converging lens D2 creates a virtual image F1 of 
an object at F. When considering a stand magnifier 
with lens D2, constant stand height D2F, and reading 
spectacle add or ocular accommodation D1, the 
stand magnifier’s (constant) enlargement of the 
object at F equals: 


E  =  D2F1/D2F


The stand magnifier’s axial magnification is its 
(constant) enlargement factor E, multiplied by what 
would be produced by D1 alone, if the object A were 
at F1.
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