# Axial Magnification 

Plane Geometry Approach

Gregg Baldwin OD
2021

Dedicated to my Geometrical Optics professor, William Brown, OD, PhD, who always taught the geometry first.

Reference:
Isaac Barrows Optical Lectures, 1667
Translated by H.C. Fay
Edited by A.G. Bennett
Publisher:
The Worshipful Company of Spectacle Makers
London, England; 1987
ISBN \# 0-951-2217-0-1

## Contents

1). prerequisite geometry
2). refraction along a line
3). refraction along a circle
4). refraction through a circle's center
5). afocal angular magnification/minification
6). retinal image size magnification
7). axial magnification of distance correction
8). axial magnification of near correction
9). object angular subtense magnification
10). stand magnifier magnification
1). prerequisite geometry

On a circle with diameter EU and center N :


Two equal arcs ~SE and ~JR can be shown to subtend equal angles by drawing any two parallel lines SD and JF. Since parallel lines intercept equal arcs across a circle,
~SF = ~JD
$\sim$ SE + ~SF = $\sim J R+\sim J D$
$\sim E F=\sim R D$
ED || RF, and therefore:
$\angle S D E=\angle J F R$


Since conversely, equal angles along a circle subtend equal arcs, any angle along any circle can be defined in terms of its subtended arc and the circle's diameter.

For example: $\angle \mathrm{RFJ}=\sim$ RJ/EU
$\angle \mathrm{KNU}=\angle \mathrm{MDH}$ $\angle \mathrm{MDH}=\sim \mathrm{MH} / \mathrm{MD}$
$=\sim \mathrm{MH} / \mathrm{UE}=2(\sim \mathrm{UM}) / \mathrm{UE}$
$=2 \angle \mathrm{MEU}$
$\angle \mathrm{KNU}=\sim \mathrm{UK} / \mathrm{UN}$
= 2(~UM)/2(UN)
$\sim \mathrm{UK}=\sim \mathrm{UM}$


Let $\mathrm{K} \Rightarrow \mathrm{N}$ and $\mathrm{D} \Rightarrow \mathrm{H}$ :
$\sim U K / U N=\sim M H / M D$
$=\sim \mathrm{MH} / \mathrm{UE}=\angle \mathrm{MEH}$
$\sim \mathrm{UK} / \mathrm{UN}=\angle \mathrm{MNU}$
$2(\sim \mathrm{UK}) / \mathrm{UN}=\angle \mathrm{MNH}=\pi$

$N S / N C=N C / N B$
$N K / N C=C N / C K$
$\Delta N S C=\Delta K W B=\Delta K N P$ $N C=K P$
$\triangle C K P=\triangle B N A=\triangle A O B$ $N A=K P$
$\mathrm{NC}=\mathrm{NA}=\mathrm{OB}$
$N C=K B=Y B$
$\mathbf{W K}=\mathrm{NS}=\mathbf{Y N}$

Keeping only:
NA = NC, and
$\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \Delta \mathrm{KWB}$ :

As $\mathbf{N} \Rightarrow \mathrm{B}, \mathrm{WK} \Rightarrow \mathrm{YN}$ because:
WK/OA $\Rightarrow$ NK/NA $=$ NK/NC
$=\mathrm{OB} / \mathrm{OA}=\mathrm{WB} / \mathrm{WK}$
so that:
$\mathrm{WK} \Rightarrow \mathrm{OB} \Rightarrow \mathrm{YN}$

Keeping only:
NA = NC, and
$\Delta \mathrm{CNK} \cong \triangle \mathrm{AOB} \cong \triangle \mathrm{KWB}:$

As $A \Rightarrow K, W K \Rightarrow Y N$


Keeping only:
NA = NC, and $\Delta C N K \cong \triangle A O B \cong \triangle K W B:$

## As $A \Rightarrow B, W K \Rightarrow Y N$



We can therefore assume that whenever A lies on BK, given right triangle KBN , if $N A=N C$, and $\Delta C N K \cong \triangle A O B \cong \Delta K W B$ as shown, then:
$\mathbf{W K}=\mathbf{Y N}$

## OB/OA = NK/NA <br> $=N^{\prime} K^{\prime} / \mathrm{N}^{\prime} \mathrm{A}$

$K W=Y N$
$K^{\prime} W^{\prime}=Y N^{\prime}$
$K B / Y N=K^{\prime} B / Y^{\prime}{ }^{\prime}$

$$
\begin{aligned}
& Q X / E N=K B / Y N \\
& =K^{\prime} B / Y N^{\prime}=Q X / E^{\prime} N^{\prime}
\end{aligned}
$$

$$
E N=E^{\prime} N^{\prime}
$$

Only one N'K'X exists for NKX since only one E'N' exists equal to EN. When EN is the smallest segment through $Y$ included in the right angle EQN, E' lies at E, and N' lies at N.

NE | ${ }^{\text {GL }}$
TY $\| E L$
$H\|\| N M$
$H I=N M$
$N M>N L$
NL is the hypotenuse of right triangle NEL
$\mathrm{NL}>\mathrm{NE}$
$\mathrm{HI}>\mathrm{NE}$

$\mathrm{NE} \| \mathrm{GL}$
$\mathrm{TY} \| \mathrm{NL}$
HI || EM
$\mathrm{HI}=\mathrm{EM}$
EM > EL
$E L$ is the hypotenuse of right triangle ENL

EL > EN<br>$\mathrm{HI}>\mathrm{EN}$


$\mathrm{X}=\mathrm{Z}$ when EN is the shortest segment through Y included in right angle EQN

In order to
find $Z$ given
$\triangle Y B N$ and
NK, we must
find $E$ using:
$\triangle Y B N$
$\cong \Delta N Y T$
$\cong \triangle \mathrm{NTE}$


In order to find $Z$ given $\triangle Y B Q$, we must find EN so that: right triangle $\triangle T Y E=\triangle Q F N$ by drawing a circle concentric with $\odot Y(F) B Q$ around its center D containing arc ~EN so that YF lies on chord EN.


Not only does:
DY = DF, but also:
$E D=N D$ and therefore $\Delta E D Y=\Delta N D F$ so $\mathrm{EY}=\mathrm{NF}$

Since $\triangle$ QFN is a right triangle, so is $\triangle T Y E$.
Once we have found
EN, we must also find NK in order to find $Z$.

## 2). refraction along a line

$\Delta N_{0} N K \cong \Delta K N A$ because:
$\sim N S=\sim N K$

Wavefront $\mathrm{G}_{0} \mathrm{~N}_{0}$ refracts into wavefront GN along
$\mathrm{G}_{0} \mathrm{~N}$, because it travels GoG in the same time it travels $\mathrm{N}_{\mathrm{o}} \mathrm{N}$.
$\boldsymbol{R}=\mathrm{NN}_{\circ} / \mathrm{GG}_{\circ}$
$=\mathrm{NN} \mathrm{N}_{\mathrm{o}} / \mathrm{NK}=\mathrm{NK} / \mathrm{NA}$


## If $\boldsymbol{R}=\mathrm{OB} / \mathrm{OA}$, and $\mathrm{KW}=\mathrm{YN}$ :

$\boldsymbol{R}=\mathrm{NK} / \mathrm{NA}$


and $Z$ is the clear image of object $A$ refracted at N along BN

given $\triangle \mathrm{BAO}$ : use $\triangle B K W$ or $\triangle Q B Y$ to find $\triangle B N Y$ use $\triangle B N Y$ to find $\triangle B K W$ or $\triangle Q B Y$
3). refraction along a circle

$\triangle \mathrm{KNA} \cong \triangle \mathrm{OCP}$
$\boldsymbol{R}=\mathrm{NK} / \mathrm{NA}=\mathrm{N}^{\prime} \mathrm{K}^{\prime} / \mathrm{N}^{\prime} \mathrm{A}=\mathrm{CO} / \mathrm{CP}$

## $\Delta \mathrm{ANN}{ }^{\prime} \cong \triangle \mathrm{AQG}$ AG/AN' = QG/NN'

(AG + AN')/2AN'
$=\left(\mathrm{QG}+\mathrm{NN}{ }^{\prime}\right) / 2 \mathrm{NN}^{\prime}$
Real object A

$\triangle A^{\prime} N^{\prime} \cong \triangle A Q G$
$A G / A N{ }^{\prime}=Q G / N N^{\prime}$
(AG + AN')/2AN'
$=\left(\mathrm{QG}+\mathrm{NN}^{\prime}\right) / 2 \mathrm{NN}^{\prime}$
Virtual object A can not be projected on a screen due to refraction at BN .

$\triangle \mathrm{XNN}{ }^{\prime} \cong \triangle \mathrm{XFE}$ XE/XN' = EF/NN'
$\left(\mathrm{XE}+\mathrm{XN}{ }^{\prime}\right) / 2 \mathrm{XN}^{\prime}$
$=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$


Real image at $(\mathrm{X}=\mathrm{Z})$ can be projected on a screen.
$\triangle \mathrm{XNN}$ ' $\cong \triangle \mathrm{XFE}$ $X E / X N{ }^{\prime}=E F / N N^{\prime}$
(XE + XN')/2XN'
$=\left(E F+N N^{\prime}\right) / 2 N^{\prime}$


Virtual image at ( $\mathrm{X}=\mathrm{Z}$ ) can not be projected on a screen.

# $(A G+A N ') / 2 A N^{\prime}=\left(Q G+N N^{\prime}\right) / 2 N N^{\prime}$ $\left(X E+X N^{\prime}\right) / 2 X N^{\prime}=\left(E F+N N^{\prime}\right) / 2 N N^{\prime}$ 

(QG + NN')/(EF + NN')
$=\left[\left(A G+A N^{\prime}\right) / 2 A N^{\prime}\right]\left[2 X N^{\prime} /\left(X E+X N^{\prime}\right)\right]$
As $N^{\prime} \Rightarrow N, X \Rightarrow Z$, and:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}^{\prime}\right)$
$\Rightarrow\left(\mathrm{QG}+\mathrm{NN}{ }^{\prime}\right) /\left(E F+N N^{\prime}\right)$
$\Rightarrow(A O / A N)(Z N / Z P)$

Also, when HD = QN' and $\mathrm{RJ}=\mathrm{FN}{ }^{\prime}$

$$
\begin{aligned}
& \left(\sim \mathrm{QG}+\sim \mathrm{NN} \mathrm{~N}^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right) \\
& =2(\sim \mathrm{ND}) / 2(\sim \mathrm{NJ})=\sim \mathrm{ND} / \sim \mathrm{NJ}
\end{aligned}
$$

As $N^{\prime} \Rightarrow N, X \Rightarrow Z$, and:
$\sim$ DJ $\Rightarrow$ line segment DJ, so:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}^{\prime}\right) /\left(\sim E F+\sim N^{\prime}\right)$
$\Rightarrow \mathrm{ND} / \mathrm{NJ}$


# DS/JI = CO/CP <br> $\mathrm{JI} / \mathrm{JN}=\mathrm{NP} / \mathrm{NC}$ <br> DN/DS = NC/NO <br> ND/NJ = (NP/NO)(CO/CP) 

As $N^{\prime} \Rightarrow \mathrm{N}, \mathrm{X} \Rightarrow \mathrm{Z}$, and:
$\left(\sim \mathrm{QG}+\sim \mathrm{NN}{ }^{\prime}\right) /\left(\sim \mathrm{EF}+\sim \mathrm{NN}{ }^{\prime}\right)$
$\Rightarrow$ (NP/NO)(CO/CP)
and therefore:
(AO/AN)(ZN/ZP) $\Rightarrow$ (NP/NO)(CO/CP)

Thus $\mathbf{R}=C O / C P$, and $Z$, (along both NP and CW), is the clear image of $A$ refracted along $\sim B N$, when:

NT||CO, so:
AO/AN = CO/NT and:
NW||CP, so:
ZN/ZP = NW/CP and:


NW/NT = NP/NO
$(\Delta \mathrm{WNT} \cong \Delta \mathrm{PNO})$

The off-axis rays from any on-axis object A, (real or virtual), can not form a virtual on-axis image at $Z$ because NW must be less than CP for $Z$ to be virtual;
 but NW must also be greater than NT.

The off-axis rays from any real onaxis object A can not form a real on-axis image at Z because NW must be greater than (or equal to)
CP for $Z$ to be real; but NW must also be greater than NT.

The off-axis rays from any real onaxis object A can not form a real onaxis image at $Z$ because NW must be greater than (or equal to, as shown here) CP for Z to be real; but NW must also be greater than NT.


The off-axis rays from a virtual on-axis object A can form a real on-axis image at $Z$, if NW is greater than CP, and WT lies along the axis.


## Since: <br> $\angle N W T=\angle N P O=\angle N C O$ and NW||CP

WT lies along the axis when:
$\Delta \mathrm{NCO} \cong \triangle \mathrm{ZCP}$


When off-axis rays from a virtual on-axis object A form a real on-axis image $Z$, this occurs at all points N because:

$\Delta A C N \cong \triangle N C Z$ for all $N$

## 4). refraction through a circle's center

Keeping:
$\boldsymbol{R}=(\mathrm{CO} / \mathrm{CP})=$
(NO/NP)(AO/AN)(ZN/ZP)
constant as:
$N \Rightarrow B$ :
$(\mathrm{BC} / \mathrm{BC})(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC}) \Rightarrow \boldsymbol{R}$

Refraction through a circle's center occurs when N lies at B , so that an object's ray from $A$ to $N$ lies along $A B C$, and an image ray lies along BCZ. The locations of the object $A$ and image $Z$ along the optic axis $B C$ are described by the equation:
$\boldsymbol{R}=\mathrm{CO} / \mathrm{CP}=(\mathrm{AC} / \mathrm{AB})(\mathrm{ZB} / \mathrm{ZC})$

If we draw $A$ and $Z$ along the optic axis $B C$ as if it were a circle, and draw CDL so that AL || ZB: $\triangle A C B \cong \triangle Z C D$, and: (AC/AB)(ZB/ZC) $=$ (ZC/ZD)(ZB/ZC) = (ZB/ZD) so as the reference circle's radius $\Rightarrow \infty$
(ZB/ZD) $\Rightarrow \boldsymbol{R}$


AL II ZB
$A Z=B L$
$\sim A Z=\sim B L$

HZ II CL
ZC = LJ
$\sim Z C=\sim L J$
$\sim A Z+\sim Z C=\sim A Z C$
$\sim B L+\sim L J=\sim B L J$
$\sim$ AZC $=\sim B L J$
AJ || CB


HZ II CL
$Z B / Z D=H B / H C$
$\Delta H B Z \cong \Delta H J C$
when $\Delta H J C=\Delta I A B$ :
$\mathrm{HC}=\mathrm{IB}$, and:
$\mathrm{IB} / \mathrm{IA}=\mathrm{HZ} / \mathrm{HB}$

This results in
Newton's Equation as the reference circle's radius $\Rightarrow \infty$ :
$(A I)(Z H)=(B I)(B H)$


## $\Delta H C Z \cong \triangle H J B \cong \triangle B A Z$ (HC/HZ) = (BA/BZ) [1/(HZ)(BA)] = [1/(HC)(BZ)]


as the reference circle's radius $\Rightarrow \infty$ :
$[1 /(\mathrm{HZ})(\mathrm{BA})]=[1 /(\mathrm{HC})(\mathrm{BZ})] \Rightarrow \boldsymbol{R} /(\mathrm{HB})(\mathrm{BZ})$
and the resulting possible sums occur:

$$
\begin{aligned}
& H Z=H B+B Z \\
& H B=H Z+B Z \\
& B Z=H Z+H B
\end{aligned}
$$

which, when multiplied by the above three factors, form the conjugate foci equations.

The conjugate foci equations allow for the effect of axial refraction at a circle to be expressed as the term:
$(1 / \mathrm{HC})=(R / \mathrm{HB})$
which is then additive with object vergence, defined as (1/BA); or image vergence, defined as (R/BZ).

## 5). afocal angular

 magnification/minification
## Afocal Angular Magnification

When distance refraction at $\sim J D E$ is followed by refraction into distance at $\sim$ QGS along axis DGF as shown; as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:


## Afocal Angular Minification

Or when distance refraction at $\sim J D E$ is followed by refraction into distance at $\sim$ QGS along axis FDG, as shown;
as $\angle \mathrm{JFD}=\angle \mathrm{SFG}$, and both approach zero:


$$
\begin{aligned}
& \theta / a \Rightarrow(\sim L D / G D) /(\sim Y G / G D) \text { as } P \Rightarrow F \\
& \theta / a \Rightarrow(F D / F G) \text { as } P \Rightarrow F \\
& \text { so that afocal axial angular } \\
& \text { magnification/minification equals: }
\end{aligned}
$$

FD/FG

# 6). retinal image size magnification 

The top diagram illustrates a standard single-surfaced eye with a distant object A , and resulting retinal image size $\mathrm{H}_{0} \mathrm{Z}_{0}$.


The bottom diagram illustrates any singlesurfaced eye with a distant object $A$, and resulting retinal image size HZ.


As $N \Rightarrow B$, the retinal image size magnification, $\mathrm{ZH} / \mathrm{Z}_{\mathrm{o}} \mathrm{H}_{\mathrm{o}}$, (relative to an arbitrary standard which factors out with subsequent comparisons), then approaches its axial value:
$Z Q / Z_{o} Q_{\circ}=Z C / Z_{o} C_{o}=H C / H_{o} C_{\circ}$
$=(\mathrm{BH} / \boldsymbol{R}) /\left(\mathrm{BH}_{\circ} / \boldsymbol{R}\right)=\mathrm{BH} / \mathrm{BH}_{\circ}$

## 7). axial magnification of distance correction

Once again representing the optic axis BCZ as a circle of infinite radius, the distant object $A$ is focused by the curve of radius BC towards the axial object $Z$, (which lies at the retina H when there is no distance refractive error).

additional refraction at G (at
B) will create distance refractive error and a combined single refractive surface of radius BL.


A distance correction must focus the distant object A towards the focal point F of the refractive error G, so that JF || BE, in order to move $Z$ back to H .


The distance correction at D:


Since the distance correction at D moves $Z$ to $H$, rays leaving $G$ after this correction must be afocal, resulting in afocal axial angular magnification equaling:

FD/FG (= FD/FB)


The (total) axial magnification of distance correction equals:
$M=\left(B H / B H_{0}\right)(F D / F B)$

## $\Delta \mathrm{EBH} \cong \Delta \mathrm{EJL}$

If E is at $\mathrm{H}_{\mathrm{o}}$, the distance refractive error is completely due to an axial length that is not standard.

If $\Delta \mathrm{EJL} \cong \Delta l_{\circ} \mathrm{FB}$, then:
$\mathrm{M}=(\mathrm{FB} / \mathrm{Fl})(\mathrm{FD} / \mathrm{FB})=\mathrm{FD} / \mathrm{FI}_{\mathrm{o}}$
There is then no (total) axial magnification of distance correction if the correction D lies at $\mathrm{l}_{\mathrm{o}}$, the front focal point of the standard eye.

## 8). axial magnification of near correction

There is no afocal axial angular magnification FD/FB when object $A$ is at distance with an emetropic eye.
(The refractive error at
G, (at B), is zero; and
the focal point F of that refractive error lies at infinity).

There is also no afocal axial angular magnification when object $A$ is at the front focal point of an uncorrected myopic eye. (The system is not afocal, and involves only one
 refracting element).

As discussed, a
distance myopic
correction at D
creates afocal axial angular minification:

FD/FG < 1
and this is relative to either the myopic eye with object $A$ at its front focal point $F$, or the emetropic eye with object $A$ at distance.

Removing the myopic distance correction at D with a converging lens at D removes this afocal axial angular magnification with
 the factor:

FG/FD > 1
and this magnification of near correction is relative to the distance corrected myope.

If additional converging power is added to the converging lens so that the near focal point is in focus for an emetropic eye, which we then consider to be the reference eye, the magnification of near correction is still that which is removed with the factor:

## 9). object angular subtense magnification

When an object at a standard distance $F s$ is moved to $F$ :


The object angular subtense magnification equals:
$\theta / \mathrm{a}=(\sim \mathrm{GFs} / \mathrm{BFs}) /(\sim \mathrm{EFs} / \mathrm{BFs})$
as $\mathrm{XFs} \Rightarrow 0$
the object angular subtense magnification approaches its axial value:
$\theta / \mathrm{a} \Rightarrow \mathrm{WFs} / \mathrm{XFs}=\mathrm{WFs} / \mathrm{YF}=\mathrm{BFs} / \mathrm{BF}$
which equals the axial
object angular subtense magnification.

The ratio describing axial object angular subtense magnification:

## BFs/BF

when multiplied by the ratio describing near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD
produces a ratio which factors out the object's actual distance to the eye, confirming that when a converging lens is used with its front focal point at the object, so parallel light leaves the converging lens from the object, the image size is the same regardless of the object-to-eye distance.

## 10). stand magnifier magnification

When the converging lens at $D$ is split into two converging lenses:

with the same combined focus $F$ :

the ratio describing axial near magnification due to a single converging lens producing parallel light for an emmetropic eye:

FB/FD
must be expressed as if all convergence occurred at a single unknown axial point De:

FB/FDe

De can be located using triangles.
$D_{2} G / D_{2} F=D e Q / D e F$
$\mathrm{D}_{2} \mathrm{G} / \mathrm{D}_{2} \mathrm{~F}_{1}=\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}$

$\mathrm{D}_{2} \mathrm{~F}(\mathrm{DeQ} / \mathrm{DeF})=\mathrm{D}_{2} \mathrm{~F}_{1}\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
$\mathrm{DeQ} / \mathrm{DeF}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{D}_{1} \mathrm{~J} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$
$1 /$ DeF $=\left(D_{2} F_{1} / D_{2} F\right)\left(1 / D_{1} F_{1}\right)$
$\mathrm{FB} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{FB} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

Multiplying the axial object subtense magnification by the axial magnification of near correction (relative to the same eye without refractive error) produces:
$\mathrm{BFs} / \mathrm{FDe}=\left(\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}\right)\left(\mathrm{BFs} / \mathrm{D}_{1} \mathrm{~F}_{1}\right)$

The converging lens $D_{2}$ creates a virtual image $F_{1}$ of an object at $F$. When considering a stand magnifier with lens $D_{2}$, constant stand height $D_{2} F$, and reading spectacle add or ocular accommodation $D_{1}$, the stand magnifier's (constant) enlargement of the object at $F$ equals:

$$
\mathrm{E}=\mathrm{D}_{2} \mathrm{~F}_{1} / \mathrm{D}_{2} \mathrm{~F}
$$

The stand magnifier's axial magnification is its (constant) enlargement factor E, multiplied by what would be produced by $\mathrm{D}_{1}$ alone, if the object A were at $\mathrm{F}_{1}$.

